Insulin-receptor autophosphorylation and endogenous substrate phosphorylation in human adipocytes from control, obese, and NIDDM subjects. 1990

R S Thies, and J M Molina, and T P Ciaraldi, and G R Freidenberg, and J M Olefsky
Department of Medicine, University California, La Jolla.

We identified a possible endogenous substrate (pp185) of the insulin-receptor kinase in human adipocytes by treating intact cells with insulin and immunoblotting the cellular extracts with polyclonal antiphosphotyrosine antibody. This 185,000-Mr protein was phosphorylated on tyrosine residues in response to insulin in both rat and human adipocytes. The time course of pp185 phosphorylation at 37 degrees C was rapid and corresponded closely to insulin-receptor autophosphorylation but preceded insulin-stimulated glucose transport. Unlike many growth factor receptors, including the insulin receptor, pp185 was not adsorbed to wheat-germ agglutinin. We found that pp185 phosphorylation occurred at 12 degrees C and that the phosphoprotein was associated with both cytoplasmic and membrane fractions at this temperature. Furthermore, pp185 phosphorylation was induced to the same extent as insulin by vanadate and hydrogen peroxide, compounds previously shown to mimic the biologic effects of insulin. In addition, dose-response analysis of insulin-stimulated glucose transport, receptor autophosphorylation, and pp185 phosphorylation resulted in ED50 values of 0.3, 12, and 12 ng/ml, respectively. These results demonstrate the magnitude of "spare" autophosphorylation and pp185 phosphorylation with respect to glucose transport stimulation in human adipocytes. To determine whether the insulin resistance characteristic of non-insulin-dependent diabetes mellitus (NIDDM) and obesity is associated with a defect in receptor autophosphorylation and/or endogenous substrate phosphorylation, we estimated the extent of beta-subunit and pp185 phosphorylation in adipocytes from NIDDM, obese, and healthy subjects. Although the efficiency of coupling between receptor activation and pp185 phosphorylation was normal in obesity and NIDDM, the capacity for insulin-receptor autophosphorylation was approximately 50% lower in NIDDM subjects compared with nondiabetic obese or lean subjects.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D003920 Diabetes Mellitus A heterogeneous group of disorders characterized by HYPERGLYCEMIA and GLUCOSE INTOLERANCE.

Related Publications

R S Thies, and J M Molina, and T P Ciaraldi, and G R Freidenberg, and J M Olefsky
May 1995, The Journal of clinical investigation,
R S Thies, and J M Molina, and T P Ciaraldi, and G R Freidenberg, and J M Olefsky
December 1989, Diabetes,
R S Thies, and J M Molina, and T P Ciaraldi, and G R Freidenberg, and J M Olefsky
July 1991, Diabetes,
R S Thies, and J M Molina, and T P Ciaraldi, and G R Freidenberg, and J M Olefsky
November 1990, The Journal of biological chemistry,
R S Thies, and J M Molina, and T P Ciaraldi, and G R Freidenberg, and J M Olefsky
April 1994, Biochemical and biophysical research communications,
R S Thies, and J M Molina, and T P Ciaraldi, and G R Freidenberg, and J M Olefsky
January 1990, Biology of the neonate,
R S Thies, and J M Molina, and T P Ciaraldi, and G R Freidenberg, and J M Olefsky
May 1976, The Journal of clinical investigation,
R S Thies, and J M Molina, and T P Ciaraldi, and G R Freidenberg, and J M Olefsky
June 2005, The Biochemical journal,
R S Thies, and J M Molina, and T P Ciaraldi, and G R Freidenberg, and J M Olefsky
December 2002, The Biochemical journal,
Copied contents to your clipboard!