Reactive oxygen species stimulate insulin secretion in rat pancreatic islets: studies using mono-oleoyl-glycerol. 2012

Marylana Saadeh, and Thomas C Ferrante, and Ada Kane, and Orian Shirihai, and Barbara E Corkey, and Jude T Deeney
Department of Medicine, Obesity Research Center, School of Medicine, Boston University, Boston, Massachusetts, United States of America.

Chronic exposure (24-72 hrs) of pancreatic islets to elevated glucose and fatty acid leads to glucolipoxicity characterized by basal insulin hypersecretion and impaired glucose-stimulated insulin secretion (GSIS). Our aim was to determine the mechanism for basal hypersecretion of insulin. We used mono-oleoyl-glycerol (MOG) as a tool to rapidly increase lipids in isolated rat pancreatic ß-cells and in the clonal pancreatic ß-cell line INS-1 832/13. MOG (25-400 µM) stimulated basal insulin secretion from ß-cells in a concentration dependent manner without increasing intracellular Ca(2+) or O(2) consumption. Like GSIS, MOG increased NAD(P)H and reactive oxygen species (ROS). The mitochondrial reductant ß-hydroxybutyrate (ß-OHB) also increased the redox state and ROS production, while ROS scavengers abrogated secretion. Diazoxide (0.4 mM) did not prevent the stimulatory effect of MOG, confirming that the effect was independent of the K(ATP)-dependent pathway of secretion. MOG was metabolized to glycerol and long-chain acyl-CoA (LC-CoA), whereas, acute oleate did not similarly increase LC-CoA. Inhibition of diacylglycerol kinase (DGK) did not mimic the effect of MOG on insulin secretion, indicating that MOG did not act primarily by inhibiting DGK. Inhibition of acyl-CoA synthetase (ACS) reduced the stimulatory effect of MOG on basal insulin secretion by 30% indicating a role for LC-CoA. These data suggest that basal insulin secretion is stimulated by increased ROS production, due to an increase in the mitochondrial redox state independent of the established components of GSIS.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010880 Piperidines A family of hexahydropyridines.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005989 Glycerides GLYCEROL esterified with FATTY ACIDS. Acylglycerol,Acylglycerols

Related Publications

Marylana Saadeh, and Thomas C Ferrante, and Ada Kane, and Orian Shirihai, and Barbara E Corkey, and Jude T Deeney
January 2011, Islets,
Marylana Saadeh, and Thomas C Ferrante, and Ada Kane, and Orian Shirihai, and Barbara E Corkey, and Jude T Deeney
January 2017, Current pharmaceutical biotechnology,
Marylana Saadeh, and Thomas C Ferrante, and Ada Kane, and Orian Shirihai, and Barbara E Corkey, and Jude T Deeney
December 1997, Naunyn-Schmiedeberg's archives of pharmacology,
Marylana Saadeh, and Thomas C Ferrante, and Ada Kane, and Orian Shirihai, and Barbara E Corkey, and Jude T Deeney
January 2003, Biochemical and biophysical research communications,
Marylana Saadeh, and Thomas C Ferrante, and Ada Kane, and Orian Shirihai, and Barbara E Corkey, and Jude T Deeney
December 2006, European journal of pharmacology,
Marylana Saadeh, and Thomas C Ferrante, and Ada Kane, and Orian Shirihai, and Barbara E Corkey, and Jude T Deeney
July 1998, Cellular and molecular life sciences : CMLS,
Marylana Saadeh, and Thomas C Ferrante, and Ada Kane, and Orian Shirihai, and Barbara E Corkey, and Jude T Deeney
June 1997, Regulatory peptides,
Marylana Saadeh, and Thomas C Ferrante, and Ada Kane, and Orian Shirihai, and Barbara E Corkey, and Jude T Deeney
July 2008, Diabetologia,
Marylana Saadeh, and Thomas C Ferrante, and Ada Kane, and Orian Shirihai, and Barbara E Corkey, and Jude T Deeney
June 2005, International journal of molecular medicine,
Marylana Saadeh, and Thomas C Ferrante, and Ada Kane, and Orian Shirihai, and Barbara E Corkey, and Jude T Deeney
May 1993, Biochemical Society transactions,
Copied contents to your clipboard!