Osteoblast and osteoclast crosstalks: from OAF to Ephrin. 2012

Roberto Tamma, and Alberta Zallone
Department of Basic Medical Sciences, Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy.

The maintenance of bone homeostasis is tightly controlled, and largely dependent upon cellular communication between osteoclasts and osteoblasts, and the coupling of bone resorption to bone formation. This tight coupling is essential for the correct function and maintenance of the skeletal system, repairing microscopic skeletal damage and replacing aged bone. Cells in osteoclast and osteoblast lineages communicate with each other through diffusible paracrine factors, cell-cell contact, and cell-bone matrix interaction. Osteoclast-osteoblast communication occurs in a basic multicellular unit (BMU) at the initiation, transition and termination phases of bone remodeling. At the initiation phase, hematopoietic precursors are recruited to the BMU. These precursors differentiate into osteoclasts following interactions with osteoblasts, which express and/or secrete ligands as RANK-L and OPG. Subsequently, the transition from bone resorption to formation is mediated by osteoclast-derived 'coupling factors', which direct the differentiation and activation of osteoblasts in resorbed lacunae to refill it with new bone. Signals derived from molecules released from the resorbed bone matrix, as TGF-beta and bidirectional signaling generated by interaction between ephrinB2 on osteoclasts and EphB4 on osteoblast precursors facilitates the transition. At the termination phase, bone remodeling is completed by osteoblastic bone formation and mineralization of bone matrix. The research steps that brought to the present knowledge are summarized in this review.

UI MeSH Term Description Entries
D008222 Lymphokines Soluble protein factors generated by activated lymphocytes that affect other cells, primarily those involved in cellular immunity. Lymphocyte Mediators,Mediators, Lymphocyte
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D010010 Osteoclasts A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption. Odontoclasts,Cementoclast,Cementoclasts,Odontoclast,Osteoclast
D001862 Bone Resorption Bone loss due to osteoclastic activity. Bone Loss, Osteoclastic,Osteoclastic Bone Loss,Bone Losses, Osteoclastic,Bone Resorptions,Loss, Osteoclastic Bone,Losses, Osteoclastic Bone,Osteoclastic Bone Losses,Resorption, Bone,Resorptions, Bone
D002113 Calcification, Physiologic Process by which organic tissue becomes hardened by the physiologic deposit of calcium salts. Bone Mineralization,Calcification, Physiological,Physiologic Calcification,Mineralization, Bone,Physiological Calcification
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016723 Bone Remodeling The continuous turnover of BONE MATRIX and mineral that involves first an increase in BONE RESORPTION (osteoclastic activity) and later, reactive BONE FORMATION (osteoblastic activity). The process of bone remodeling takes place in the adult skeleton at discrete foci. The process ensures the mechanical integrity of the skeleton throughout life and plays an important role in calcium HOMEOSTASIS. An imbalance in the regulation of bone remodeling's two contrasting events, bone resorption and bone formation, results in many of the metabolic bone diseases, such as OSTEOPOROSIS. Bone Turnover,Bone Turnovers,Remodeling, Bone,Turnover, Bone,Turnovers, Bone
D036342 Ephrins Signaling proteins that are ligands for the EPH FAMILY RECEPTORS. They are membrane-bound proteins that are attached to the CELL MEMBRANE either through a GLYCOINOSITOL PHOSPHOLIPID MEMBRANE ANCHOR or through a transmembrane domain. Many of the ephrins are considered important intercellular signaling molecules that control morphogenic changes during embryogenesis. Ephrin,Eph Receptor Ligands,Ligands, Eph Receptor,Receptor Ligands, Eph

Related Publications

Roberto Tamma, and Alberta Zallone
March 1995, Nihon rinsho. Japanese journal of clinical medicine,
Roberto Tamma, and Alberta Zallone
December 2004, Nihon rinsho. Japanese journal of clinical medicine,
Roberto Tamma, and Alberta Zallone
June 1979, Kokubyo Gakkai zasshi. The Journal of the Stomatological Society, Japan,
Roberto Tamma, and Alberta Zallone
May 2008, Archives of biochemistry and biophysics,
Roberto Tamma, and Alberta Zallone
March 2018, Connective tissue research,
Roberto Tamma, and Alberta Zallone
January 1979, La semaine des hopitaux : organe fonde par l'Association d'enseignement medical des hopitaux de Paris,
Roberto Tamma, and Alberta Zallone
January 1986, Progress in clinical and biological research,
Copied contents to your clipboard!