Complement gene expression in hepatic and extrahepatic tissues of NZB and NZB x W (F1) mouse strains. 1990

J H Passwell, and G F Schreiner, and R A Wetsel, and H R Colten
Samuel Jared Kushnick Pediatric Immunology Laboratory Sheba Medical Center, Sackler School of Medicine, Israel.

To study the role of local production of complement proteins during the evolution of a naturally occurring immune complex disease, C3, C4, C2 and Factor B mRNA expression was assessed in several tissues of the inbred mouse strains NZB and (NZB x W) F1 hybrid. In the NZB/W F1 hybrid strain, coincident with the development of glomerulonephritis a marked increase in kidney C3 and C4 mRNA was observed; Factor B mRNA, which is expressed as a doublet in kidney and intestine, showed an increase in expression of the smaller transcript. This alteration of kidney C3, C4 and Factor B mRNA is identical to that noted in association with lupus nephritis in the MRL lpr/lpr strain and following in vivo administration of endotoxin to the BALB/c strain. The development of systemic lupus erythematosis (SLE) in the NZB/W F1 was not associated with a marked change in hepatic complement gene expression. These findings support the hypothesis that local production of complement may play a role in the pathogenesis of glomerulonephritis and other tissue injury in SLE.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008180 Lupus Erythematosus, Systemic A chronic, relapsing, inflammatory, and often febrile multisystemic disorder of connective tissue, characterized principally by involvement of the skin, joints, kidneys, and serosal membranes. It is of unknown etiology, but is thought to represent a failure of the regulatory mechanisms of the autoimmune system. The disease is marked by a wide range of system dysfunctions, an elevated erythrocyte sedimentation rate, and the formation of LE cells in the blood or bone marrow. Libman-Sacks Disease,Lupus Erythematosus Disseminatus,Systemic Lupus Erythematosus,Disease, Libman-Sacks,Libman Sacks Disease
D008814 Mice, Inbred NZB An inbred strain of mouse that is widely used as a model for AUTOIMMUNE DISEASES such as SYSTEMIC LUPUS ERYTHEMATOSUS. Mice, NZB,Mouse, Inbred NZB,Mouse, NZB,Inbred NZB Mice,Inbred NZB Mouse,NZB Mice,NZB Mice, Inbred,NZB Mouse,NZB Mouse, Inbred
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D005260 Female Females
D005921 Glomerulonephritis Inflammation of the renal glomeruli (KIDNEY GLOMERULUS) that can be classified by the type of glomerular injuries including antibody deposition, complement activation, cellular proliferation, and glomerulosclerosis. These structural and functional abnormalities usually lead to HEMATURIA; PROTEINURIA; HYPERTENSION; and RENAL INSUFFICIENCY. Bright Disease,Kidney Scarring,Glomerulonephritides,Scarring, Kidney
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings

Related Publications

J H Passwell, and G F Schreiner, and R A Wetsel, and H R Colten
January 1976, Dermatologica,
J H Passwell, and G F Schreiner, and R A Wetsel, and H R Colten
March 1971, The Journal of pathology,
J H Passwell, and G F Schreiner, and R A Wetsel, and H R Colten
June 1994, Chemico-biological interactions,
J H Passwell, and G F Schreiner, and R A Wetsel, and H R Colten
January 2023, Frontiers in cardiovascular medicine,
J H Passwell, and G F Schreiner, and R A Wetsel, and H R Colten
October 1991, The American journal of pathology,
J H Passwell, and G F Schreiner, and R A Wetsel, and H R Colten
March 1994, Kansenshogaku zasshi. The Journal of the Japanese Association for Infectious Diseases,
J H Passwell, and G F Schreiner, and R A Wetsel, and H R Colten
January 2019, Immunology and cell biology,
J H Passwell, and G F Schreiner, and R A Wetsel, and H R Colten
April 1966, The Journal of pathology and bacteriology,
J H Passwell, and G F Schreiner, and R A Wetsel, and H R Colten
March 1987, Clinical immunology and immunopathology,
J H Passwell, and G F Schreiner, and R A Wetsel, and H R Colten
March 2020, Immunology and cell biology,
Copied contents to your clipboard!