Targeting vascular changes in lesions in multiple sclerosis and experimental autoimmune encephalomyelitis. 2012

Stephen J Karlik, and Wendi A Roscoe, and Cindy Patinote, and Christiane Contino-Pepin
Department of Pathology, University of Western Ontario, London, Ontario, Canada, USA. skarlik@uwo.ca

What is the origin of the complex vascular changes that exist in the CNS lesions of Multiple Sclerosis (MS)? From the beginning of the study of the pathological changes in MS in the 19th century, lesions were seen to be associated with veins. On a microscopic level, there have been numerous pathological changes to these vessels including altered structure and permeability, fibrinolysis, iron-related alterations and collagen deposition. Vascular changes in inflammatory conditions outside the CNS are well documented and we hypothesize that angiogenesis (the generation of new blood vessels from existing) is an integral process of lesion development and spread in MS. We demonstrated similar vascular abnormalities in MS and in the animal model, EAE. We measured the increase in angiogenesis-related genes in EAE and review herein the effectiveness of chemical inhibitors of angiogenesis (SU5416, thalidomide and several derivatives). We postulate that interference with angiogenesis provides a suitable non-immunological target for investigation in MS.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D009103 Multiple Sclerosis An autoimmune disorder mainly affecting young adults and characterized by destruction of myelin in the central nervous system. Pathologic findings include multiple sharply demarcated areas of demyelination throughout the white matter of the central nervous system. Clinical manifestations include visual loss, extra-ocular movement disorders, paresthesias, loss of sensation, weakness, dysarthria, spasticity, ataxia, and bladder dysfunction. The usual pattern is one of recurrent attacks followed by partial recovery (see MULTIPLE SCLEROSIS, RELAPSING-REMITTING), but acute fulminating and chronic progressive forms (see MULTIPLE SCLEROSIS, CHRONIC PROGRESSIVE) also occur. (Adams et al., Principles of Neurology, 6th ed, p903) MS (Multiple Sclerosis),Multiple Sclerosis, Acute Fulminating,Sclerosis, Disseminated,Disseminated Sclerosis,Sclerosis, Multiple
D011758 Pyrroles Azoles of one NITROGEN and two double bonds that have aromatic chemical properties. Pyrrole
D004681 Encephalomyelitis, Autoimmune, Experimental An experimental animal model for central nervous system demyelinating disease. Inoculation with a white matter emulsion combined with FREUND'S ADJUVANT, myelin basic protein, or purified central myelin triggers a T cell-mediated immune response directed towards central myelin. The pathologic features are similar to MULTIPLE SCLEROSIS, including perivascular and periventricular foci of inflammation and demyelination. Subpial demyelination underlying meningeal infiltrations also occurs, which is also a feature of ENCEPHALOMYELITIS, ACUTE DISSEMINATED. Passive immunization with T-cells from an afflicted animal to a normal animal also induces this condition. (From Immunol Res 1998;17(1-2):217-27; Raine CS, Textbook of Neuropathology, 2nd ed, p604-5) Autoimmune Encephalomyelitis, Experimental,Encephalomyelitis, Allergic,Encephalomyelitis, Experimental Autoimmune,Allergic Encephalomyelitis,Allergic Encephalomyelitis, Experimental,Autoimmune Experimental Encephalomyelitis,Experimental Allergic Encephalomyelitis,Experimental Autoimmune Encephalomyelitis,Encephalomyelitis, Autoimmune Experimental,Encephalomyelitis, Experimental Allergic,Experimental Allergic Encephalomyelitides,Experimental Encephalomyelitis, Autoimmune
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013792 Thalidomide A piperidinyl isoindole originally introduced as a non-barbiturate hypnotic, but withdrawn from the market due to teratogenic effects. It has been reintroduced and used for a number of immunological and inflammatory disorders. Thalidomide displays immunosuppressive and anti-angiogenic activity. It inhibits release of TUMOR NECROSIS FACTOR-ALPHA from monocytes, and modulates other cytokine action. Sedoval,Thalomid
D016503 Drug Delivery Systems Systems for the delivery of drugs to target sites of pharmacological actions. Technologies employed include those concerning drug preparation, route of administration, site targeting, metabolism, and toxicity. Drug Targeting,Delivery System, Drug,Delivery Systems, Drug,Drug Delivery System,Drug Targetings,System, Drug Delivery,Systems, Drug Delivery,Targeting, Drug,Targetings, Drug
D020533 Angiogenesis Inhibitors Agents and endogenous substances that antagonize or inhibit the development of new blood vessels. Angiogenesis Factor Inhibitor,Angiogenesis Inhibitor,Angiogenetic Antagonist,Angiogenetic Inhibitor,Angiogenic Antagonist,Angiogenic Antagonists,Angiogenic Inhibitor,Angiostatic Agent,Angiostatic Agents,Anti-Angiogenetic Agent,Anti-Angiogenic Drug,Anti-Angiogenic Drugs,Antiangiogenic Agent,Neovascularization Inhibitor,Neovascularization Inhibitors,Angiogenesis Factor Inhibitors,Angiogenetic Antagonists,Angiogenetic Inhibitors,Angiogenic Inhibitors,Antagonists, Angiogenic,Anti-Angiogenesis Effect,Anti-Angiogenesis Effects,Anti-Angiogenetic Agents,Antiangiogenesis Effect,Antiangiogenesis Effects,Antiangiogenic Agents,Inhibitors, Angiogenesis,Inhibitors, Angiogenetic,Inhibitors, Angiogenic,Inhibitors, Neovascularization,Agent, Angiostatic,Agent, Anti-Angiogenetic,Agent, Antiangiogenic,Agents, Angiostatic,Agents, Anti-Angiogenetic,Agents, Antiangiogenic,Antagonist, Angiogenetic,Antagonist, Angiogenic,Antagonists, Angiogenetic,Anti Angiogenesis Effect,Anti Angiogenesis Effects,Anti Angiogenetic Agent,Anti Angiogenetic Agents,Anti Angiogenic Drug,Anti Angiogenic Drugs,Drug, Anti-Angiogenic,Drugs, Anti-Angiogenic,Effect, Anti-Angiogenesis,Effect, Antiangiogenesis,Effects, Anti-Angiogenesis,Effects, Antiangiogenesis,Factor Inhibitor, Angiogenesis,Factor Inhibitors, Angiogenesis,Inhibitor, Angiogenesis,Inhibitor, Angiogenesis Factor,Inhibitor, Angiogenetic,Inhibitor, Angiogenic,Inhibitor, Neovascularization,Inhibitors, Angiogenesis Factor

Related Publications

Stephen J Karlik, and Wendi A Roscoe, and Cindy Patinote, and Christiane Contino-Pepin
January 2022, Seminars in immunology,
Stephen J Karlik, and Wendi A Roscoe, and Cindy Patinote, and Christiane Contino-Pepin
January 1994, La Revue du praticien,
Stephen J Karlik, and Wendi A Roscoe, and Cindy Patinote, and Christiane Contino-Pepin
January 2020, Journal of inflammation research,
Stephen J Karlik, and Wendi A Roscoe, and Cindy Patinote, and Christiane Contino-Pepin
January 2003, Advances in experimental medicine and biology,
Stephen J Karlik, and Wendi A Roscoe, and Cindy Patinote, and Christiane Contino-Pepin
January 2012, Autoimmunity reviews,
Stephen J Karlik, and Wendi A Roscoe, and Cindy Patinote, and Christiane Contino-Pepin
November 2006, Expert review of neurotherapeutics,
Stephen J Karlik, and Wendi A Roscoe, and Cindy Patinote, and Christiane Contino-Pepin
July 2014, Acta neuropathologica communications,
Stephen J Karlik, and Wendi A Roscoe, and Cindy Patinote, and Christiane Contino-Pepin
September 2016, Multiple sclerosis and related disorders,
Stephen J Karlik, and Wendi A Roscoe, and Cindy Patinote, and Christiane Contino-Pepin
October 2010, Clinical and experimental immunology,
Stephen J Karlik, and Wendi A Roscoe, and Cindy Patinote, and Christiane Contino-Pepin
March 1999, Acta neurologica Belgica,
Copied contents to your clipboard!