Angiotensin II-induced JNK activation is mediated by NAD(P)H oxidase in isolated rat pancreatic islets. 2012

E S Alves, and A A Haidar, and C D Quadros, and D S Carvalho, and D Morgan, and M S Rocha, and R Curi, and A R Carpinelli, and A E Hirata
Department of Physiology, Federal University of Sao Paulo-UNIFESP, São Paulo, Brazil.

Angiotensin II (AII), the active component of the renin angiotensin system (RAS), plays a vital role in the regulation of physiological processes of the cardiovascular system, but also has autocrine and paracrine actions in various tissues and organs. Many studies have shown the existence of RAS in the pancreas of humans and rodents. The aim of this study was to evaluate potential signaling pathways mediated by AII in isolated pancreatic islets of rats. Phosphorylation of MAPKs (ERK1/2, JNK and p38MAPK), and the interaction between proteins JAK/STAT were evaluated. AII increased JAK2/STAT1 (42%) and JAK2/STAT3 (100%) interaction without altering the total content of JAK2. Analyzing the activation of MAPKs (ERK1/2, JNK and p38MAPK) in isolated pancreatic islets from rats we observed that AII rapidly (3 min) promoted a significant increase in the phosphorylation degree of these proteins after incubation with the hormone. Curiously JNK protein phosphorylation was inhibited by DPI, suggesting the involvement of NAD(P)H oxidase in the activation of protein.

UI MeSH Term Description Entries
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D005260 Female Females
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014662 Vasoconstrictor Agents Drugs used to cause constriction of the blood vessels. Vasoactive Agonist,Vasoactive Agonists,Vasoconstrictor,Vasoconstrictor Agent,Vasoconstrictor Drug,Vasopressor Agent,Vasopressor Agents,Vasoconstrictor Drugs,Vasoconstrictors,Agent, Vasoconstrictor,Agent, Vasopressor,Agents, Vasoconstrictor,Agents, Vasopressor,Agonist, Vasoactive,Agonists, Vasoactive,Drug, Vasoconstrictor,Drugs, Vasoconstrictor
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen

Related Publications

E S Alves, and A A Haidar, and C D Quadros, and D S Carvalho, and D Morgan, and M S Rocha, and R Curi, and A R Carpinelli, and A E Hirata
February 2009, Regulatory peptides,
E S Alves, and A A Haidar, and C D Quadros, and D S Carvalho, and D Morgan, and M S Rocha, and R Curi, and A R Carpinelli, and A E Hirata
August 2003, Biochemical and biophysical research communications,
E S Alves, and A A Haidar, and C D Quadros, and D S Carvalho, and D Morgan, and M S Rocha, and R Curi, and A R Carpinelli, and A E Hirata
April 2011, Journal of cellular physiology,
E S Alves, and A A Haidar, and C D Quadros, and D S Carvalho, and D Morgan, and M S Rocha, and R Curi, and A R Carpinelli, and A E Hirata
September 2002, Circulation research,
E S Alves, and A A Haidar, and C D Quadros, and D S Carvalho, and D Morgan, and M S Rocha, and R Curi, and A R Carpinelli, and A E Hirata
January 2018, BioMed research international,
E S Alves, and A A Haidar, and C D Quadros, and D S Carvalho, and D Morgan, and M S Rocha, and R Curi, and A R Carpinelli, and A E Hirata
May 2003, Arteriosclerosis, thrombosis, and vascular biology,
E S Alves, and A A Haidar, and C D Quadros, and D S Carvalho, and D Morgan, and M S Rocha, and R Curi, and A R Carpinelli, and A E Hirata
May 2003, Journal of hypertension,
E S Alves, and A A Haidar, and C D Quadros, and D S Carvalho, and D Morgan, and M S Rocha, and R Curi, and A R Carpinelli, and A E Hirata
June 2013, British journal of pharmacology,
E S Alves, and A A Haidar, and C D Quadros, and D S Carvalho, and D Morgan, and M S Rocha, and R Curi, and A R Carpinelli, and A E Hirata
April 2005, Circulation research,
E S Alves, and A A Haidar, and C D Quadros, and D S Carvalho, and D Morgan, and M S Rocha, and R Curi, and A R Carpinelli, and A E Hirata
December 2000, Circulation research,
Copied contents to your clipboard!