[Intravenous immunoglobulin: immunomodulatory key of the immune system]. 2012

Rocío Ramos-Medina, and Angel L Corbí, and Silvia Sánchez-Ramón
Unidad de Inmunología Clínica, Departamento de Inmunología, Hospital General Universitario Gregorio Marañón, Madrid, Spain.

The mechanisms of action of intravenous immunoglobulins (IVIG) are complex and mostly reproduce those of the natural immunoglobulin G (IgG) in our organism. The therapeutic doses used range from substitutive (200-400mg/kg of body weight) in immunodeficiencies to high doses (1-2g/kg of body weight) in autoimmune or inflammatory diseases. The paradoxical pro- or anti-inflammatory effects of IVIG are based on the modulation of the expression of activating versus inhibitory Fc receptors, the type and stage of maturation of the target cell. This huge diversity of actions may explain the extensive and varied range of clinical applications of IVIG nowadays (immunodeficiencies, autoimmune diseases, degenerative diseases such as Alzheimer's, and cancer). On the other hand, biological therapies with monoclonal antibodies mostly consist of IgG molecules with unique antigen specificity, and currently represent a therapeutic field expanding in various pathologies including cancer and diseases of immunological basis. The effects of IgG are added to their specific effects on molecules target.

UI MeSH Term Description Entries
D007109 Immunity Nonsusceptibility to the invasive or pathogenic effects of foreign microorganisms or to the toxic effect of antigenic substances. Immune Process,Immune Response,Immune Processes,Immune Responses,Process, Immune,Response, Immune
D007140 Immunoglobulin Fab Fragments Univalent antigen-binding fragments composed of one entire IMMUNOGLOBULIN LIGHT CHAIN and the amino terminal end of one of the IMMUNOGLOBULIN HEAVY CHAINS from the hinge region, linked to each other by disulfide bonds. Fab contains the IMMUNOGLOBULIN VARIABLE REGIONS, which are part of the antigen-binding site, and the first IMMUNOGLOBULIN CONSTANT REGIONS. This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN. Fab Fragment,Fab Fragments,Ig Fab Fragments,Immunoglobulins, Fab Fragment,Fab Immunoglobulin Fragments,Immunoglobulin Fab Fragment,Immunoglobulins, Fab,Fab Fragment Immunoglobulins,Fab Fragment, Immunoglobulin,Fab Fragments, Immunoglobulin,Fragment Immunoglobulins, Fab,Fragment, Fab,Immunoglobulin Fragments, Fab
D007155 Immunologic Factors Biologically active substances whose activities affect or play a role in the functioning of the immune system. Biological Response Modifier,Biomodulator,Immune Factor,Immunological Factor,Immunomodulator,Immunomodulators,Biological Response Modifiers,Biomodulators,Factors, Immunologic,Immune Factors,Immunological Factors,Modifiers, Biological Response,Response Modifiers, Biological,Factor, Immune,Factor, Immunological,Factors, Immune,Factors, Immunological,Modifier, Biological Response,Response Modifier, Biological
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D011961 Receptors, Fc Molecules found on the surface of some, but not all, B-lymphocytes, T-lymphocytes, and macrophages, which recognize and combine with the Fc (crystallizable) portion of immunoglobulin molecules. Fc Receptors,Fc Receptor,Receptor, Fc
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent

Related Publications

Rocío Ramos-Medina, and Angel L Corbí, and Silvia Sánchez-Ramón
December 2002, Immunology,
Rocío Ramos-Medina, and Angel L Corbí, and Silvia Sánchez-Ramón
June 1991, The Journal of rheumatology,
Rocío Ramos-Medina, and Angel L Corbí, and Silvia Sánchez-Ramón
December 2008, Trends in immunology,
Rocío Ramos-Medina, and Angel L Corbí, and Silvia Sánchez-Ramón
January 1998, Vojnosanitetski pregled,
Rocío Ramos-Medina, and Angel L Corbí, and Silvia Sánchez-Ramón
December 2005, Clinical reviews in allergy & immunology,
Rocío Ramos-Medina, and Angel L Corbí, and Silvia Sánchez-Ramón
March 2013, Nature reviews. Immunology,
Rocío Ramos-Medina, and Angel L Corbí, and Silvia Sánchez-Ramón
January 2015, Expert review of clinical immunology,
Rocío Ramos-Medina, and Angel L Corbí, and Silvia Sánchez-Ramón
December 2014, Clinical and experimental immunology,
Rocío Ramos-Medina, and Angel L Corbí, and Silvia Sánchez-Ramón
March 1986, Helvetica paediatrica acta,
Rocío Ramos-Medina, and Angel L Corbí, and Silvia Sánchez-Ramón
September 1983, Lancet (London, England),
Copied contents to your clipboard!