Glutamine in the pathogenesis of acute hepatic encephalopathy. 2012

Kakulavarapu V Rama Rao, and Arumugam R Jayakumar, and Michael D Norenberg
Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33125, United States.

Hepatic encephalopathy (HE) is the major neurological disorder associated with liver disease. It presents in chronic and acute forms, and astrocytes are the major neural cells involved. While the principal etiological factor in the pathogenesis of HE is increased levels of blood and brain ammonia, glutamine, a byproduct of ammonia metabolism, has also been implicated in its pathogenesis. This article reviews the current status of glutamine in the pathogenesis of HE, particularly its involvement in some of the events triggered by ammonia, including mitochondrial dysfunction, generation of oxidative stress, and alterations in signaling mechanisms, including activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-κB). Mechanisms by which glutamine contributes to astrocyte swelling/brain edema associated with acute liver failure (ALF) will also be described.

UI MeSH Term Description Entries
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D006501 Hepatic Encephalopathy A syndrome characterized by central nervous system dysfunction in association with LIVER FAILURE, including portal-systemic shunts. Clinical features include lethargy and CONFUSION (frequently progressing to COMA); ASTERIXIS; NYSTAGMUS, PATHOLOGIC; brisk oculovestibular reflexes; decorticate and decerebrate posturing; MUSCLE SPASTICITY; and bilateral extensor plantar reflexes (see REFLEX, BABINSKI). ELECTROENCEPHALOGRAPHY may demonstrate triphasic waves. (From Adams et al., Principles of Neurology, 6th ed, pp1117-20; Plum & Posner, Diagnosis of Stupor and Coma, 3rd ed, p222-5) Encephalopathy, Hepatic,Portosystemic Encephalopathy,Encephalopathy, Hepatocerebral,Encephalopathy, Portal-Systemic,Encephalopathy, Portosystemic,Fulminant Hepatic Failure with Cerebral Edema,Hepatic Coma,Hepatic Stupor,Hepatocerebral Encephalopathy,Portal-Systemic Encephalopathy,Coma, Hepatic,Comas, Hepatic,Encephalopathies, Hepatic,Encephalopathies, Hepatocerebral,Encephalopathies, Portal-Systemic,Encephalopathies, Portosystemic,Encephalopathy, Portal Systemic,Hepatic Comas,Hepatic Encephalopathies,Hepatic Stupors,Hepatocerebral Encephalopathies,Portal Systemic Encephalopathy,Portal-Systemic Encephalopathies,Portosystemic Encephalopathies,Stupor, Hepatic,Stupors, Hepatic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000208 Acute Disease Disease having a short and relatively severe course. Acute Diseases,Disease, Acute,Diseases, Acute
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative

Related Publications

Kakulavarapu V Rama Rao, and Arumugam R Jayakumar, and Michael D Norenberg
July 1998, Digestion,
Kakulavarapu V Rama Rao, and Arumugam R Jayakumar, and Michael D Norenberg
January 2014, Neurochemical research,
Kakulavarapu V Rama Rao, and Arumugam R Jayakumar, and Michael D Norenberg
June 2012, Neurochemistry international,
Kakulavarapu V Rama Rao, and Arumugam R Jayakumar, and Michael D Norenberg
May 2023, Journal of neurology,
Kakulavarapu V Rama Rao, and Arumugam R Jayakumar, and Michael D Norenberg
August 2003, Seminars in liver disease,
Kakulavarapu V Rama Rao, and Arumugam R Jayakumar, and Michael D Norenberg
January 1988, Arquivos de gastroenterologia,
Kakulavarapu V Rama Rao, and Arumugam R Jayakumar, and Michael D Norenberg
January 1990, Annals of clinical and laboratory science,
Kakulavarapu V Rama Rao, and Arumugam R Jayakumar, and Michael D Norenberg
May 1999, Gastroenterologia y hepatologia,
Kakulavarapu V Rama Rao, and Arumugam R Jayakumar, and Michael D Norenberg
January 2012, Gastroenterology research and practice,
Kakulavarapu V Rama Rao, and Arumugam R Jayakumar, and Michael D Norenberg
August 1982, Harefuah,
Copied contents to your clipboard!