Deletion of the Hoc and Soc capsid proteins affects the surface and cellular uptake properties of bacteriophage T4 derived nanoparticles. 2012

Kelly Robertson, and Yoko Furukawa, and Alison Underwood, and Lindsay Black, and Jinny L Liu
Center of for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, United States.

Recently the use of engineered viral scaffolds in biotechnology and medical applications has been increasing dramatically. T4 phage capsid derived nanoparticles (NPs) have potential advantages as sensors and in biotechnology. These applications require that the physical properties and cellular uptake of these NPs be understood. In this study we used a T4 deletion mutant to investigate the effects of removing both the Hoc and Soc proteins from the capsid surface on T4 tailless NPs. The surface charge, zeta potential, size, and cellular uptake efficiencies for both the T4 NP and T4ΔHocΔSoc NP mutant were measured and compared using dynamic light scattering and flow cytometry and significant differences were detected.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D001709 Biotechnology Body of knowledge related to the use of organisms, cells or cell-derived constituents for the purpose of developing products which are technically, scientifically and clinically useful. Alteration of biologic function at the molecular level (i.e., GENETIC ENGINEERING) is a central focus; laboratory methods used include TRANSFECTION and CLONING technologies, sequence and structure analysis algorithms, computer databases, and gene and protein structure function analysis and prediction. Biotechnologies
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation
D013499 Surface Properties Characteristics or attributes of the outer boundaries of objects, including molecules. Properties, Surface,Property, Surface,Surface Property
D017122 Bacteriophage T4 Virulent bacteriophage and type species of the genus T4-like phages, in the family MYOVIRIDAE. It infects E. coli and is the best known of the T-even phages. Its virion contains linear double-stranded DNA, terminally redundant and circularly permuted. Bacteriophage T2,Coliphage T2,Coliphage T4,Enterobacteria phage T2,Enterobacteria phage T4,Phage T2,Phage T4,T2 Phage,T4 Phage,Phage, T2,Phage, T4,Phages, T2,Phages, T4,T2 Phages,T2, Enterobacteria phage,T4 Phages
D017353 Gene Deletion A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus. Deletion, Gene,Deletions, Gene,Gene Deletions
D053758 Nanoparticles Nanometer-sized particles that are nanoscale in three dimensions. They include nanocrystaline materials; NANOCAPSULES; METAL NANOPARTICLES; DENDRIMERS, and QUANTUM DOTS. The uses of nanoparticles include DRUG DELIVERY SYSTEMS and cancer targeting and imaging. Nanocrystalline Materials,Nanocrystals,Material, Nanocrystalline,Materials, Nanocrystalline,Nanocrystal,Nanocrystalline Material,Nanoparticle
D036022 Capsid Proteins Proteins that form the CAPSID of VIRUSES. Procapsid Protein,Procapsid Proteins,Viral Coat Protein,Viral Coat Proteins,Viral V Antigens,Viral V Proteins,Capsid Protein,Viral Outer Coat Protein,Antigens, Viral V,Coat Protein, Viral,V Antigens, Viral,V Proteins, Viral

Related Publications

Kelly Robertson, and Yoko Furukawa, and Alison Underwood, and Lindsay Black, and Jinny L Liu
July 1998, Gene,
Kelly Robertson, and Yoko Furukawa, and Alison Underwood, and Lindsay Black, and Jinny L Liu
January 2007, Journal of virological methods,
Kelly Robertson, and Yoko Furukawa, and Alison Underwood, and Lindsay Black, and Jinny L Liu
April 1978, Journal of molecular biology,
Kelly Robertson, and Yoko Furukawa, and Alison Underwood, and Lindsay Black, and Jinny L Liu
October 1976, Journal of molecular biology,
Kelly Robertson, and Yoko Furukawa, and Alison Underwood, and Lindsay Black, and Jinny L Liu
January 2014, Methods in molecular biology (Clifton, N.J.),
Kelly Robertson, and Yoko Furukawa, and Alison Underwood, and Lindsay Black, and Jinny L Liu
January 2014, Methods in molecular biology (Clifton, N.J.),
Kelly Robertson, and Yoko Furukawa, and Alison Underwood, and Lindsay Black, and Jinny L Liu
June 2000, Virology,
Kelly Robertson, and Yoko Furukawa, and Alison Underwood, and Lindsay Black, and Jinny L Liu
July 1996, Virology,
Kelly Robertson, and Yoko Furukawa, and Alison Underwood, and Lindsay Black, and Jinny L Liu
July 2011, Biomacromolecules,
Copied contents to your clipboard!