Chromatin dynamics in DNA double-strand break repair. 2012

Lei Shi, and Philipp Oberdoerffer
Mouse Cancer Genetics Program, NCI- Frederick, NIH, Frederick, MD 21702, USA.

DNA double-strand breaks (DSBs) occur in the context of a highly organized chromatin environment and are, thus, a significant threat to the epigenomic integrity of eukaryotic cells. Changes in break-proximal chromatin structure are thought to be a prerequisite for efficient DNA repair and may help protect the structural integrity of the nucleus. Unlike most bona fide DNA repair factors, chromatin influences the repair process at several levels: the existing chromatin context at the site of damage directly affects the access and kinetics of the repair machinery; DSB induced chromatin modifications influence the choice of repair factors, thereby modulating repair outcome; lastly, DNA damage can have a significant impact on chromatin beyond the site of damage. We will discuss recent findings that highlight both the complexity and importance of dynamic and tightly orchestrated chromatin reorganization to ensure efficient DSB repair and nuclear integrity. This article is part of a Special Issue entitled: Chromatin in time and space.

UI MeSH Term Description Entries
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D006570 Heterochromatin The portion of chromosome material that remains condensed and is transcriptionally inactive during INTERPHASE. Heterochromatins
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071857 Tumor Suppressor p53-Binding Protein 1 A nuclear and cytoplasmic protein that associates with KINETOCHORES and contains a C-terminal TUDOR DOMAIN. It plays a critical role in the cellular response to DNA DAMAGE and localizes to DOUBLE-STRAND DNA BREAKS. It may also function in M PHASE CELL CYCLE CHECKPOINTS and as an enhancer of TUMOR SUPPRESSOR PROTEIN P53-mediated transcriptional activation. 53BP1 Protein,TP53BP1 Protein,Tumor Protein p53-Binding Protein, 1,p202 Protein,Tumor Protein p53 Binding Protein, 1,Tumor Suppressor p53 Binding Protein 1
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Lei Shi, and Philipp Oberdoerffer
April 2007, Current opinion in genetics & development,
Lei Shi, and Philipp Oberdoerffer
April 2017, Current opinion in genetics & development,
Lei Shi, and Philipp Oberdoerffer
October 2020, Essays in biochemistry,
Lei Shi, and Philipp Oberdoerffer
November 2014, Experimental cell research,
Lei Shi, and Philipp Oberdoerffer
January 2019, Advances in protein chemistry and structural biology,
Lei Shi, and Philipp Oberdoerffer
October 2013, DNA repair,
Lei Shi, and Philipp Oberdoerffer
August 2005, Cell cycle (Georgetown, Tex.),
Lei Shi, and Philipp Oberdoerffer
January 2022, Frontiers in cell and developmental biology,
Lei Shi, and Philipp Oberdoerffer
June 2016, Mutation research,
Lei Shi, and Philipp Oberdoerffer
October 1999, Current biology : CB,
Copied contents to your clipboard!