The dicotyledonous NAD malic enzyme C4 plant Cleome gynandra displays age-dependent plasticity of C4 decarboxylation biochemistry. 2012

M Sommer, and A Bräutigam, and A P M Weber
Institute of Plant Biochemistry, Heinrich-Heine-University, Universitätsstraße 1, Düsseldorf, Germany.

The C(4) photosynthetic pathway enriches carbon dioxide in the vicinity of Rubisco, thereby enabling plants to assimilate carbon more efficiently. Three canonical subtypes of C(4) exist, named after their main decarboxylating enzymes: NAD-dependent malic enzyme type, NADP-dependent malic enzyme type and phosphoenolpyruvate carboxykinase type. Cleome gynandra is known to perform NAD-ME type C(4) photosynthesis. To further assess the mode of C(4) in C. gynandra and its manifestation in leaves of different age, total enzyme activities of eight C(4) -related enzymes and the relative abundance of 31 metabolites were measured. C. spinosa was used as a C(3) control. C. gynandra was confirmed as an NAD-ME type C(4) plant in mid-aged leaves, whereas a mixed NAD-ME and PEPCK type was observed in older leaves. Young leaves showed a C(3) -C(4) intermediate state with respect to enzyme activities and metabolite abundances. Comparative transcriptome analysis of mid-aged leaves of C. gynandra and C. spinosa showed that the transcript of only one aspartate aminotransferase (AspAT) isoform is highly abundant in C. gynandra. However, the canonical model of the NAD-ME pathway requires two AspATs, a mitochondrial and a cytosolic isoform. Surprisingly, our results indicate the existence of only one highly abundant AspAT isoform. Using GFP-fusion, this isozyme was localised exclusively to mitochondria. We propose a revised model of NAD-ME type C(4) photosynthesis in C. gynandra, in which both AspAT catalysed reactions take place in mitochondria and PEPCK catalyses an alternative decarboxylating pathway.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010730 Phosphoenolpyruvate Carboxylase An enzyme with high affinity for carbon dioxide. It catalyzes irreversibly the formation of oxaloacetate from phosphoenolpyruvate and carbon dioxide. This fixation of carbon dioxide in several bacteria and some plants is the first step in the biosynthesis of glucose. EC 4.1.1.31. Carboxylase, Phosphoenolpyruvate
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D003653 Decarboxylation The removal of a carboxyl group, usually in the form of carbon dioxide, from a chemical compound. Decarboxylations
D001219 Aspartate Aminotransferases Enzymes of the transferase class that catalyze the conversion of L-aspartate and 2-ketoglutarate to oxaloacetate and L-glutamate. EC 2.6.1.1. Aspartate Aminotransferase,Aspartate Transaminase,Glutamic-Oxaloacetic Transaminase,SGOT,Aspartate Apoaminotransferase,Glutamate-Aspartate Transaminase,L-Aspartate-2-Oxoglutarate Aminotransferase,Serum Glutamic-Oxaloacetic Transaminase,Aminotransferase, Aspartate,Aminotransferase, L-Aspartate-2-Oxoglutarate,Aminotransferases, Aspartate,Apoaminotransferase, Aspartate,Glutamate Aspartate Transaminase,Glutamic Oxaloacetic Transaminase,Glutamic-Oxaloacetic Transaminase, Serum,L Aspartate 2 Oxoglutarate Aminotransferase,Serum Glutamic Oxaloacetic Transaminase,Transaminase, Aspartate,Transaminase, Glutamate-Aspartate,Transaminase, Glutamic-Oxaloacetic,Transaminase, Serum Glutamic-Oxaloacetic
D031485 Cleome A plant genus of the family CAPPARACEAE that contains cleogynol and 15alpha-acetoxycleomblynol (dammaranes) and 1-epibrachyacarpone (a triterpene), and ISOTHIOCYANATES. Cleomes

Related Publications

M Sommer, and A Bräutigam, and A P M Weber
October 1990, FEBS letters,
M Sommer, and A Bräutigam, and A P M Weber
January 1974, Archives of biochemistry and biophysics,
M Sommer, and A Bräutigam, and A P M Weber
January 1994, The Journal of biological chemistry,
M Sommer, and A Bräutigam, and A P M Weber
November 1992, Plant molecular biology,
M Sommer, and A Bräutigam, and A P M Weber
November 1977, Archives of biochemistry and biophysics,
M Sommer, and A Bräutigam, and A P M Weber
July 1973, FEBS letters,
M Sommer, and A Bräutigam, and A P M Weber
July 2014, Journal of experimental botany,
Copied contents to your clipboard!