Saturation site-directed mutagenesis of thymidylate synthase. 1990

S Climie, and L Ruiz-Perez, and D Gonzalez-Pacanowska, and P Prapunwattana, and S W Cho, and R Stroud, and D V Santi
Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.

We have subjected 12 different codons of a synthetic Lactobacillus casei thymidylate synthase (TS) gene to saturation site-directed mutagenesis to create amino acid "replacement sets" at each of those positions. The target residues were chosen because they are highly conserved and because they are important for the structure and function of the protein as indicated by solution and structural studies. The mutagenesis procedure involved excision of a fragment of the synthetic gene containing the target codon, followed by its replacement with a mixture of oligonucleotides which code for all 20 amino acids and the amber stop codon. TS mutants were identified by DNA sequencing, and catalytically active mutants were identified by genetic complementation using a Thy- strain of Escherichia coli. Only 3 of the 12 target amino acids examined were essential for TS activity; and of the 125 total mutants identified, 57 were catalytically active. These results point to a high degree of plasticity of TS in accommodating function with structural change.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013940 Thymidylate Synthase An enzyme of the transferase class that catalyzes the reaction 5,10-methylenetetrahydrofolate and dUMP to dihydrofolate and dTMP in the synthesis of thymidine triphosphate. (From Dorland, 27th ed) EC 2.1.1.45. Thymidylate Synthetase,Synthase, Thymidylate,Synthetase, Thymidylate
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction
D016254 Mutagenesis, Insertional Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation. Gene Insertion,Insertion Mutation,Insertional Activation,Insertional Mutagenesis,Linker-Insertion Mutagenesis,Mutagenesis, Cassette,Sequence Insertion,Viral Insertional Mutagenesis,Activation, Insertional,Activations, Insertional,Cassette Mutagenesis,Gene Insertions,Insertion Mutations,Insertion, Gene,Insertion, Sequence,Insertional Activations,Insertional Mutagenesis, Viral,Insertions, Gene,Insertions, Sequence,Linker Insertion Mutagenesis,Mutagenesis, Linker-Insertion,Mutagenesis, Viral Insertional,Mutation, Insertion,Mutations, Insertion,Sequence Insertions
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

S Climie, and L Ruiz-Perez, and D Gonzalez-Pacanowska, and P Prapunwattana, and S W Cho, and R Stroud, and D V Santi
April 1990, The Journal of biological chemistry,
S Climie, and L Ruiz-Perez, and D Gonzalez-Pacanowska, and P Prapunwattana, and S W Cho, and R Stroud, and D V Santi
August 2003, The Journal of biological chemistry,
S Climie, and L Ruiz-Perez, and D Gonzalez-Pacanowska, and P Prapunwattana, and S W Cho, and R Stroud, and D V Santi
January 1994, Methods in molecular biology (Clifton, N.J.),
S Climie, and L Ruiz-Perez, and D Gonzalez-Pacanowska, and P Prapunwattana, and S W Cho, and R Stroud, and D V Santi
July 2007, Journal of biomolecular techniques : JBT,
S Climie, and L Ruiz-Perez, and D Gonzalez-Pacanowska, and P Prapunwattana, and S W Cho, and R Stroud, and D V Santi
May 1997, The Journal of biological chemistry,
S Climie, and L Ruiz-Perez, and D Gonzalez-Pacanowska, and P Prapunwattana, and S W Cho, and R Stroud, and D V Santi
March 1988, Biochimica et biophysica acta,
S Climie, and L Ruiz-Perez, and D Gonzalez-Pacanowska, and P Prapunwattana, and S W Cho, and R Stroud, and D V Santi
June 2018, Journal of bioscience and bioengineering,
S Climie, and L Ruiz-Perez, and D Gonzalez-Pacanowska, and P Prapunwattana, and S W Cho, and R Stroud, and D V Santi
August 2004, Nucleic acids research,
S Climie, and L Ruiz-Perez, and D Gonzalez-Pacanowska, and P Prapunwattana, and S W Cho, and R Stroud, and D V Santi
June 1995, European journal of biochemistry,
S Climie, and L Ruiz-Perez, and D Gonzalez-Pacanowska, and P Prapunwattana, and S W Cho, and R Stroud, and D V Santi
July 2002, Journal of the American Chemical Society,
Copied contents to your clipboard!