Direct catecholaminergic innervation of primate spinothalamic tract neurons. 1990

K N Westlund, and S M Carlton, and D Zhang, and W D Willis
Department of Anatomy, University of Texas Medical Branch, Galveston 77550.

Catecholaminergic axonal varicosities identified by immunocytochemical staining for dopamine-beta-hydroxylase were observed at the light microscopic level apposing the somata of retrogradely labeled spinothalamic tract neurons in the monkey spinal cord. Three retrogradely labeled and two intracellularly labeled spinothalamic neurons were serially sectioned and examined at selected intervals at the electron microscopic level. Electron microscopic study revealed that axonal boutons directly contacted the somata and/or dendrites of lamina I, IV, and V spinothalamic tract neurons. All of the profiles apposing one of the retrogradely labeled lamina I spinothalamic tract neurons were categorized from eight planes of section spaced at 1-micron intervals. Of the 305 profiles counted that were adjacent to this soma, 17 (5.6%) stained positively for dopamine-beta-hydroxylase. Of these 17 appositions, three were followed in serial sections to confirm that they had synaptic thickenings and alignment of vesicles along the membrane contacting the spinothalamic tract soma. Catecholaminergic boutons were observed apposing the somata and dendrites of intracellularly filled STT cells characterized as high threshold and wide dynamic range neurons. These observations clearly indicate a direct innervation of spinothalamic tract neurons by catecholaminergic neurons, providing anatomical data to support previous physiological findings demonstrating that catecholamines modulate nociceptive transmission.

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013133 Spinothalamic Tracts A bundle of NERVE FIBERS connecting each posterior horn of the spinal cord to the opposite side of the THALAMUS, carrying information about pain, temperature, and touch. It is one of two major routes by which afferent spinal NERVE FIBERS carrying sensations of somaesthesis are transmitted to the THALAMUS. Spinothalamic Tract,Tract, Spinothalamic,Tracts, Spinothalamic

Related Publications

K N Westlund, and S M Carlton, and D Zhang, and W D Willis
September 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K N Westlund, and S M Carlton, and D Zhang, and W D Willis
May 1975, Journal of neurophysiology,
K N Westlund, and S M Carlton, and D Zhang, and W D Willis
May 1976, Journal of neurophysiology,
K N Westlund, and S M Carlton, and D Zhang, and W D Willis
September 1989, Journal of neurophysiology,
K N Westlund, and S M Carlton, and D Zhang, and W D Willis
June 1990, The Journal of comparative neurology,
K N Westlund, and S M Carlton, and D Zhang, and W D Willis
August 1998, Journal of neurophysiology,
K N Westlund, and S M Carlton, and D Zhang, and W D Willis
March 1974, Journal of neurophysiology,
K N Westlund, and S M Carlton, and D Zhang, and W D Willis
March 1999, Journal of neurophysiology,
K N Westlund, and S M Carlton, and D Zhang, and W D Willis
April 1977, Brain research,
K N Westlund, and S M Carlton, and D Zhang, and W D Willis
August 1978, Pain,
Copied contents to your clipboard!