Pharmacogenomics of the heptahelical receptor regulators G-protein-coupled receptor kinases and arrestins: the known and the unknown. 2012

Anastasios Lymperopoulos, and Ashley Bathgate
Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft. Lauderdale, FL 33328, USA. al806@nova.edu

Heptahelical G-protein-coupled receptors are the most diverse and therapeutically important family of receptors, playing major roles in the physiology of various organs and tissues. They couple their ligand binding to G-protein activation, which then transmits intracellular signals. G-protein signaling is terminated by phosphorylation of the receptor by the family of G-protein-coupled receptor kinases (GRKs), followed by arrestin (Arr) binding, which uncouples the phosphorylated receptor from the G-protein and subsequently targets the receptor for internalization. Moreover, Arrs can transmit signals in their own right during receptor internalization. Genetic polymorphisms in receptors, as well as in GRK and Arr family members per se, which affect regulation of receptor signaling and function, have just started being identified and characterized. The present review will discuss what is known so far in this evolving field of GRK/Arr pharmacogenomics, as well as highlight important areas likely to produce invaluable information in the future.

UI MeSH Term Description Entries
D010597 Pharmacogenetics A branch of genetics which deals with the genetic variability in individual responses to drugs and drug metabolism (BIOTRANSFORMATION). Pharmacogenomics
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D054768 G-Protein-Coupled Receptor Kinases A family of serine-threonine kinases that are specific for G-PROTEIN-COUPLED RECEPTORS. They are regulatory proteins that play a role in G-protein-coupled receptor densensitization. G-Protein-Coupled Receptor Kinase,G Protein Coupled Receptor Kinase,G Protein Coupled Receptor Kinases,Kinase, G-Protein-Coupled Receptor,Kinases, G-Protein-Coupled Receptor,Receptor Kinase, G-Protein-Coupled,Receptor Kinases, G-Protein-Coupled
D019204 GTP-Binding Proteins Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory
D019390 Arrestins Regulatory proteins that down-regulate phosphorylated G-protein membrane receptors, including rod and cone photoreceptors and adrenergic receptors.

Related Publications

Anastasios Lymperopoulos, and Ashley Bathgate
November 1996, Biochemical Society transactions,
Anastasios Lymperopoulos, and Ashley Bathgate
October 1996, Canadian journal of physiology and pharmacology,
Anastasios Lymperopoulos, and Ashley Bathgate
January 2019, Frontiers in pharmacology,
Anastasios Lymperopoulos, and Ashley Bathgate
January 2007, Annual review of physiology,
Anastasios Lymperopoulos, and Ashley Bathgate
January 2003, Molecular pharmacology,
Anastasios Lymperopoulos, and Ashley Bathgate
January 1995, Vitamins and hormones,
Anastasios Lymperopoulos, and Ashley Bathgate
January 1998, Annual review of pharmacology and toxicology,
Anastasios Lymperopoulos, and Ashley Bathgate
April 2016, The Journal of biological chemistry,
Anastasios Lymperopoulos, and Ashley Bathgate
September 2016, Pharmacological research,
Copied contents to your clipboard!