Detergent-induced activation of the hepatitis C virus genotype 1b RNA polymerase. 2012

Leiyun Weng, and Michinori Kohara, and Takaji Wakita, and Kunitada Shimotohno, and Tetsuya Toyoda
Unit of Viral Genome Regulation, Institut Pasteur of Shanghai, Key Laboratory of Molecular Virology & Immunology, Chinese Academy of Sciences, Shanghai, PR China.

Recently, we found that sphingomyelin bound and activated hepatitis C virus (HCV) 1b RNA polymerase (RdRp), thereby recruiting the HCV replication complex into lipid raft structures. Detergents are commonly used for resolving lipids and purifying proteins, including HCV RdRp. Here, we tested the effect of detergents on HCV RdRp activity in vitro and found that non-ionic (Triton X-100, NP-40, Tween 20, Tween 80, and Brij 35) and twitterionic (CHAPS) detergents activated HCV 1b RdRps by 8-16.6 folds, but did not affect 1a or 2a RdRps. The maximum effect of these detergents was observed at around their critical micelle concentrations. On the other hand, ionic detergents (SDS and DOC) completely inactivated polymerase activity at 0.01%. In the presence of Triton X-100, HCV 1b RdRp did not form oligomers, but recruited more template RNA and increased the speed of polymerization. Comparison of polymerase and RNA-binding activity between JFH1 RdRp and Triton X-100-activated 1b RdRp indicated that monomer RdRp showed high activity because JFH1 RdRp was a monomer in physiological conditions of transcription. Besides, 502H plays a key role on oligomerization of 1b RdRp, while 2a RdRps which have the amino acid S at position 502 are monomers. This oligomer formed by 502H was disrupted both by high salt and Triton X-100. On the contrary, HCV 1b RdRp completely lost fidelity in the presence of 0.02% Triton X-100, which suggests that caution should be exercised while using Triton X-100 in anti-HCV RdRp drug screening tests.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008823 Micelles Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS. Micelle
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D011136 Polysorbates Sorbitan mono-9-octadecanoate poly(oxy-1,2-ethanediyl) derivatives; complex mixtures of polyoxyethylene ethers used as emulsifiers or dispersing agents in pharmaceuticals. Polysorbate,Polysorbate 20,Polysorbate 80,Sorbitan Derivatives,Tween,Tweens,PSML,Polyoxyethylene Sorbitan Monolaurate,Tween 20,Tween 60,Tween 80,Tween 81,Tween 85,20s, Polysorbate,20s, Tween,60s, Tween,80s, Polysorbate,80s, Tween,81s, Tween,85s, Tween,Derivative, Sorbitan,Derivatives, Sorbitan,Monolaurate, Polyoxyethylene Sorbitan,Monolaurates, Polyoxyethylene Sorbitan,PSMLs,Polyoxyethylene Sorbitan Monolaurates,Polysorbate 20s,Polysorbate 80s,Sorbitan Derivative,Sorbitan Monolaurate, Polyoxyethylene,Sorbitan Monolaurates, Polyoxyethylene,Tween 20s,Tween 60s,Tween 80s,Tween 81s,Tween 85s
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002793 Cholic Acids The 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholanic acid family of bile acids in man, usually conjugated with glycine or taurine. They act as detergents to solubilize fats for intestinal absorption, are reabsorbed by the small intestine, and are used as cholagogues and choleretics. Cholalic Acids,Acids, Cholalic,Acids, Cholic
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003902 Detergents Purifying or cleansing agents, usually salts of long-chain aliphatic bases or acids, that exert cleansing (oil-dissolving) and antimicrobial effects through a surface action that depends on possessing both hydrophilic and hydrophobic properties. Cleansing Agents,Detergent Pods,Laundry Detergent Pods,Laundry Pods,Syndet,Synthetic Detergent,Agent, Cleansing,Agents, Cleansing,Cleansing Agent,Detergent,Detergent Pod,Detergent Pod, Laundry,Detergent Pods, Laundry,Detergent, Synthetic,Detergents, Synthetic,Laundry Detergent Pod,Laundry Pod,Pod, Detergent,Pod, Laundry,Pod, Laundry Detergent,Pods, Detergent,Pods, Laundry,Pods, Laundry Detergent,Synthetic Detergents

Related Publications

Leiyun Weng, and Michinori Kohara, and Takaji Wakita, and Kunitada Shimotohno, and Tetsuya Toyoda
January 2004, Biochemical and biophysical research communications,
Leiyun Weng, and Michinori Kohara, and Takaji Wakita, and Kunitada Shimotohno, and Tetsuya Toyoda
January 2009, Voprosy virusologii,
Leiyun Weng, and Michinori Kohara, and Takaji Wakita, and Kunitada Shimotohno, and Tetsuya Toyoda
January 2013, PloS one,
Leiyun Weng, and Michinori Kohara, and Takaji Wakita, and Kunitada Shimotohno, and Tetsuya Toyoda
June 1996, European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology,
Leiyun Weng, and Michinori Kohara, and Takaji Wakita, and Kunitada Shimotohno, and Tetsuya Toyoda
January 2000, Current topics in microbiology and immunology,
Leiyun Weng, and Michinori Kohara, and Takaji Wakita, and Kunitada Shimotohno, and Tetsuya Toyoda
January 1999, Methods in molecular medicine,
Leiyun Weng, and Michinori Kohara, and Takaji Wakita, and Kunitada Shimotohno, and Tetsuya Toyoda
January 2013, PloS one,
Leiyun Weng, and Michinori Kohara, and Takaji Wakita, and Kunitada Shimotohno, and Tetsuya Toyoda
March 2019, Virology,
Leiyun Weng, and Michinori Kohara, and Takaji Wakita, and Kunitada Shimotohno, and Tetsuya Toyoda
January 1996, Methods in enzymology,
Leiyun Weng, and Michinori Kohara, and Takaji Wakita, and Kunitada Shimotohno, and Tetsuya Toyoda
October 1997, Hepatology (Baltimore, Md.),
Copied contents to your clipboard!