Inhibition of tungsten-induced protein aggregation by cetyl trimethyl ammonium bromide. 2012

Christopher D Mensch, and Harrison B Davis
Merck & Co., West Point, PA 19486, USA. christopher.mensch@merck.com

TECHNICAL ABSTRACT: The purpose of this work was to investigate a potential mechanism for the inhibition of tungsten-mediated monoclonal antibody (mAb) biophysical modifications and sub-visible particle formation. A 1 mg/mL mAb formulated in 150 mM NaCl, 20 mM histidine, pH 6.0, was incubated with 1, 37, and 100 ppm of tungsten polyanions in the form of sodium tungstate both in the presence and absence of the anionic surfactant and chelating agent diethylene triamine pentaacetic acid (DTPA) or the cationic surfactant cetyl trimethyl ammonium bromide (CTAB) for 24 h at 25 °C. Assays including pH, UV-Vis spectroscopy, size exclusion chromatography, intrinsic tryptophan/tyrosine fluorescence, and micro-flow imaging were performed to assess the impact on short-term mAb stability and aggregation. We conclude that the use of micromolar concentrations of the formulation excipient and cationic surfactant CTAB equivalent to the anticipated tungsten concentration in solution effectively inhibits loss of protein concentration, fragmentation, changes in intrinsic fluorescence intensity, and the formation of sub-visible particles. The purpose of this work was to investigate a potential mechanism for the inhibition of tungsten-mediated monoclonal antibody (mAb) biophysical modifications and sub-visible particle formation. A mAb formulation was incubated with tungsten polyanions in the presence and absence of the anionic surfactant and chelating agent diethylene triamine pentaacetic acid (DTPA) or the cationic surfactant cetyl trimethyl ammonium bromide (CTAB). Formulation was characterized by pH, UV-Vis spectroscopy, size exclusion chromatography, intrinsic tryptophan/tyrosine fluorescence, and micro-flow imaging. We conclude that the formulation excipient and cationic surfactant CTAB effectively inhibits biophysical modifications and sub-visible particle formation.

UI MeSH Term Description Entries
D002593 Cetrimonium Compounds Cetyltrimethylammonium compounds that have cationic detergent, antiseptic, and disinfectant activities. They are used in pharmaceuticals, foods, and cosmetics as preservatives; on skin, mucous membranes, etc., as antiseptics or cleansers, and also as emulsifiers. These compounds are toxic when used orally due to neuromuscular blockade. Cetyltrimethylammonium Compounds,Cetrimides,Compounds, Cetrimonium,Compounds, Cetyltrimethylammonium
D005453 Fluorescence The property of emitting radiation while being irradiated. The radiation emitted is usually of longer wavelength than that incident or absorbed, e.g., a substance can be irradiated with invisible radiation and emit visible light. X-ray fluorescence is used in diagnosis.
D013501 Surface-Active Agents Agents that modify interfacial tension of water; usually substances that have one lipophilic and one hydrophilic group in the molecule; includes soaps, detergents, emulsifiers, dispersing and wetting agents, and several groups of antiseptics. Surface Active Agent,Surface-Active Agent,Surfactant,Surfactants,Tenside,Amphiphilic Agents,Surface Active Agents,Tensides,Active Agent, Surface,Active Agents, Surface,Agent, Surface Active,Agent, Surface-Active,Agents, Amphiphilic,Agents, Surface Active,Agents, Surface-Active
D014414 Tungsten A metallic element with the atomic symbol W, atomic number 74, and atomic weight 183.85. It is used in many manufacturing applications, including increasing the hardness, toughness, and tensile strength of steel; manufacture of filaments for incandescent light bulbs; and in contact points for automotive and electrical apparatus. Wolfram
D050337 Trimethyl Ammonium Compounds QUATERNARY AMMONIUM COMPOUNDS containing three methyl groups, having the general formula of (CH3)3N+R. Ammonium Compounds, Trimethyl

Related Publications

Christopher D Mensch, and Harrison B Davis
July 2017, Cellular and molecular biology (Noisy-le-Grand, France),
Christopher D Mensch, and Harrison B Davis
January 1977, International journal of peptide and protein research,
Christopher D Mensch, and Harrison B Davis
September 2016, Journal of fluorescence,
Christopher D Mensch, and Harrison B Davis
February 1949, Journal of the American Pharmaceutical Association. American Pharmaceutical Association,
Christopher D Mensch, and Harrison B Davis
January 2001, Applied biochemistry and biotechnology,
Christopher D Mensch, and Harrison B Davis
July 1965, Biophysical journal,
Christopher D Mensch, and Harrison B Davis
October 1953, The Journal of pathology and bacteriology,
Christopher D Mensch, and Harrison B Davis
September 2008, Analytica chimica acta,
Christopher D Mensch, and Harrison B Davis
October 2010, Guang pu xue yu guang pu fen xi = Guang pu,
Copied contents to your clipboard!