Physiologic implications of metal-ion transport by ZIP14 and ZIP8. 2012

Supak Jenkitkasemwong, and Chia-Yu Wang, and Bryan Mackenzie, and Mitchell D Knutson
Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA.

Zinc, iron, and manganese are essential trace elements that serve as catalytic or structural components of larger molecules that are indispensable for life. The three metal ions possess similar chemical properties and have been shown to compete for uptake in a variety of tissues, suggesting that they share common transport proteins. Two likely candidates are the recently identified transmembrane proteins ZIP14 and ZIP8, which have been shown to mediate the cellular uptake of a number of divalent metal ions including zinc, iron, manganese, and cadmium. Although knockout and transgenic mouse models are beginning to define the physiologic roles of ZIP14 and ZIP8 in the handling of zinc and cadmium, their roles in the metabolism of iron and manganese remain to be defined. Here we review similarities and differences in ZIP14 and ZIP8 in terms of structure, metal transport, tissue distribution, subcellular localization, and regulation. We also discuss potential roles of these proteins in the metabolism of zinc, iron, manganese, and cadmium as well as recent associations with human diseases.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D006432 Hemochromatosis A disorder of iron metabolism characterized by a triad of HEMOSIDEROSIS; LIVER CIRRHOSIS; and DIABETES MELLITUS. It is caused by massive iron deposits in parenchymal cells that may develop after a prolonged increase of iron absorption. (Jablonski's Dictionary of Syndromes & Eponymic Diseases, 2d ed) Diabetes, Bronze,Bronze Diabetes,Bronzed Cirrhosis,Familial Hemochromatosis,Genetic Hemochromatosis,Haemochromatosis,Hemochromatoses,Iron Storage Disorder,Pigmentary Cirrhosis,Primary Hemochromatosis,Troisier-Hanot-Chauffard Syndrome,Von Recklenhausen-Applebaum Disease,Bronzed Cirrhoses,Cirrhoses, Bronzed,Cirrhoses, Pigmentary,Cirrhosis, Bronzed,Cirrhosis, Pigmentary,Disease, Von Recklenhausen-Applebaum,Diseases, Von Recklenhausen-Applebaum,Disorder, Iron Storage,Disorders, Iron Storage,Familial Hemochromatoses,Genetic Hemochromatoses,Haemochromatoses,Hemochromatose,Hemochromatoses, Familial,Hemochromatoses, Genetic,Hemochromatosis, Familial,Hemochromatosis, Genetic,Iron Storage Disorders,Pigmentary Cirrhoses,Recklenhausen-Applebaum Disease, Von,Recklenhausen-Applebaum Diseases, Von,Storage Disorder, Iron,Storage Disorders, Iron,Syndrome, Troisier-Hanot-Chauffard,Syndromes, Troisier-Hanot-Chauffard,Troisier Hanot Chauffard Syndrome,Troisier-Hanot-Chauffard Syndromes,Von Recklenhausen Applebaum Disease,Von Recklenhausen-Applebaum Diseases
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D015032 Zinc A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with ANEMIA, short stature, HYPOGONADISM, impaired WOUND HEALING, and geophagia. It is known by the symbol Zn.
D027682 Cation Transport Proteins Membrane proteins whose primary function is to facilitate the transport of positively charged molecules (cations) across a biological membrane. Cation Pumps,Cation Pump,Pump, Cation,Pumps, Cation

Related Publications

Supak Jenkitkasemwong, and Chia-Yu Wang, and Bryan Mackenzie, and Mitchell D Knutson
August 2020, Brain sciences,
Supak Jenkitkasemwong, and Chia-Yu Wang, and Bryan Mackenzie, and Mitchell D Knutson
May 2008, Molecular pharmacology,
Supak Jenkitkasemwong, and Chia-Yu Wang, and Bryan Mackenzie, and Mitchell D Knutson
June 2019, Nutrients,
Supak Jenkitkasemwong, and Chia-Yu Wang, and Bryan Mackenzie, and Mitchell D Knutson
November 2012, Metallomics : integrated biometal science,
Supak Jenkitkasemwong, and Chia-Yu Wang, and Bryan Mackenzie, and Mitchell D Knutson
April 2019, Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine,
Supak Jenkitkasemwong, and Chia-Yu Wang, and Bryan Mackenzie, and Mitchell D Knutson
July 2012, Metallomics : integrated biometal science,
Supak Jenkitkasemwong, and Chia-Yu Wang, and Bryan Mackenzie, and Mitchell D Knutson
February 2017, Experimental eye research,
Supak Jenkitkasemwong, and Chia-Yu Wang, and Bryan Mackenzie, and Mitchell D Knutson
July 2016, Toxicology research,
Supak Jenkitkasemwong, and Chia-Yu Wang, and Bryan Mackenzie, and Mitchell D Knutson
May 2020, International journal of molecular sciences,
Supak Jenkitkasemwong, and Chia-Yu Wang, and Bryan Mackenzie, and Mitchell D Knutson
May 2014, International journal of toxicology,
Copied contents to your clipboard!