Co-transcriptional regulation of alternative pre-mRNA splicing. 2012

Sanjeev Shukla, and Shalini Oberdoerffer
Mouse Cancer Genetics Program, NCI- Frederick, NIH, Frederick, MD 21702, USA.

While studies of alternative pre-mRNA splicing regulation have typically focused on RNA-binding proteins and their target sequences within nascent message, it is becoming increasingly evident that mRNA splicing, RNA polymerase II (pol II) elongation and chromatin structure are intricately intertwined. The majority of introns in higher eukaryotes are excised prior to transcript release in a manner that is dependent on transcription through pol II. As a result of co-transcriptional splicing, variations in pol II elongation influence alternative splicing patterns, wherein a slower elongation rate is associated with increased inclusion of alternative exons within mature mRNA. Physiological barriers to pol II elongation, such as repressive chromatin structure, can thereby similarly impact splicing decisions. Surprisingly, pre-mRNA splicing can reciprocally influence pol II elongation and chromatin structure. Here, we highlight recent advances in co-transcriptional splicing that reveal an extensive network of coupling between splicing, transcription and chromatin remodeling complexes. This article is part of a Special Issue entitled: Chromatin in time and space.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012315 RNA Caps Nucleic acid structures found on the 5' end of eukaryotic cellular and viral messenger RNA and some heterogeneous nuclear RNAs. These structures, which are positively charged, protect the above specified RNAs at their termini against attack by phosphatases and other nucleases and promote mRNA function at the level of initiation of translation. Analogs of the RNA caps (RNA CAP ANALOGS), which lack the positive charge, inhibit the initiation of protein synthesis. RNA Cap,5' Capped RNA,5' mRNA Cap Structure,Cap, RNA,Caps, RNA,RNA, 5' Capped
D012319 RNA Polymerase II A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6. DNA-Dependent RNA Polymerase II,RNA Pol II,RNA Polymerase B,DNA Dependent RNA Polymerase II
D012322 RNA Precursors RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production. Precursor RNA,Primary RNA Transcript,RNA, Messenger, Precursors,RNA, Ribosomal, Precursors,RNA, Small Nuclear, Precursors,RNA, Transfer, Precursors,Pre-mRNA,Pre-rRNA,Pre-snRNA,Pre-tRNA,Primary Transcript, RNA,RNA Precursor,mRNA Precursor,rRNA Precursor,snRNA Precursor,tRNA Precursor,Pre mRNA,Pre rRNA,Pre snRNA,Pre tRNA,Precursor, RNA,Precursor, mRNA,Precursor, rRNA,Precursor, snRNA,Precursor, tRNA,Precursors, RNA,RNA Primary Transcript,RNA Transcript, Primary,RNA, Precursor,Transcript, Primary RNA,Transcript, RNA Primary
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D017398 Alternative Splicing A process whereby multiple RNA transcripts are generated from a single gene. Alternative splicing involves the splicing together of other possible sets of EXONS during the processing of some, but not all, transcripts of the gene. Thus a particular exon may be connected to any one of several alternative exons to form a mature RNA. The alternative forms of mature MESSENGER RNA produce PROTEIN ISOFORMS in which one part of the isoforms is common while the other parts are different. RNA Splicing, Alternative,Splicing, Alternative,Alternate Splicing,Nested Transcripts,Alternate Splicings,Alternative RNA Splicing,Alternative RNA Splicings,Alternative Splicings,Nested Transcript,RNA Splicings, Alternative,Splicing, Alternate,Splicing, Alternative RNA,Splicings, Alternate,Splicings, Alternative,Splicings, Alternative RNA,Transcript, Nested,Transcripts, Nested

Related Publications

Sanjeev Shukla, and Shalini Oberdoerffer
October 2002, Briefings in functional genomics & proteomics,
Sanjeev Shukla, and Shalini Oberdoerffer
January 2014, Methods in molecular biology (Clifton, N.J.),
Sanjeev Shukla, and Shalini Oberdoerffer
November 2007, Nature reviews. Neuroscience,
Sanjeev Shukla, and Shalini Oberdoerffer
June 2021, Nucleic acids research,
Sanjeev Shukla, and Shalini Oberdoerffer
January 2015, Annual review of biochemistry,
Sanjeev Shukla, and Shalini Oberdoerffer
July 2005, Molecular cell,
Sanjeev Shukla, and Shalini Oberdoerffer
April 2018, Acta physiologica (Oxford, England),
Sanjeev Shukla, and Shalini Oberdoerffer
January 2014, Methods in molecular biology (Clifton, N.J.),
Sanjeev Shukla, and Shalini Oberdoerffer
January 2017, Photochemistry and photobiology,
Sanjeev Shukla, and Shalini Oberdoerffer
March 2001, Current opinion in hematology,
Copied contents to your clipboard!