| D008024 |
Ligands |
A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) |
Ligand |
|
| D011485 |
Protein Binding |
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. |
Plasma Protein Binding Capacity,Binding, Protein |
|
| D011944 |
Receptors, Androgen |
Proteins, generally found in the CYTOPLASM, that specifically bind ANDROGENS and mediate their cellular actions. The complex of the androgen and receptor migrates to the CELL NUCLEUS where it induces transcription of specific segments of DNA. |
Androgen Receptors,5 alpha-Dihydrotestosterone Receptor,Androgen Receptor,Dihydrotestosterone Receptors,Receptor, Testosterone,Receptors, Androgens,Receptors, Dihydrotestosterone,Receptors, Stanolone,Stanolone Receptor,Testosterone Receptor,5 alpha Dihydrotestosterone Receptor,Androgens Receptors,Receptor, 5 alpha-Dihydrotestosterone,Receptor, Androgen,Receptor, Stanolone,Stanolone Receptors,alpha-Dihydrotestosterone Receptor, 5 |
|
| D002467 |
Cell Nucleus |
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) |
Cell Nuclei,Nuclei, Cell,Nucleus, Cell |
|
| D003593 |
Cytoplasm |
The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) |
Protoplasm,Cytoplasms,Protoplasms |
|
| D005786 |
Gene Expression Regulation |
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. |
Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000595 |
Amino Acid Sequence |
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. |
Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein |
|
| D000728 |
Androgens |
Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power. |
Androgen,Androgen Receptor Agonist,Androgen Effect,Androgen Effects,Androgen Receptor Agonists,Androgenic Agents,Androgenic Compounds,Agents, Androgenic,Agonist, Androgen Receptor,Agonists, Androgen Receptor,Compounds, Androgenic,Effect, Androgen,Effects, Androgen,Receptor Agonist, Androgen,Receptor Agonists, Androgen |
|
| D017434 |
Protein Structure, Tertiary |
The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. |
Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures |
|