Clinical decision support of therapeutic drug monitoring of phenytoin: measured versus adjusted phenytoin plasma concentrations. 2012

Matthew D Krasowski, and Louis E Penrod
Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA. mkrasows@healthcare.uiowa.edu.

BACKGROUND Therapeutic drug monitoring of phenytoin by measurement of plasma concentrations is often employed to optimize clinical efficacy while avoiding adverse effects. This is most commonly accomplished by measurement of total phenytoin plasma concentrations. However, total phenytoin levels can be misleading in patients with factors such as low plasma albumin that alter the free (unbound) concentrations of phenytoin. Direct measurement of free phenytoin concentrations in plasma is more costly and time-consuming than determination of total phenytoin concentrations. An alternative to direct measurement of free phenytoin concentrations is use of the Sheiner-Tozer equation to calculate an adjusted phenytoin that corrects for the plasma albumin concentration. Innovative medical informatics tools to identify patients who would benefit from adjusted phenytoin calculations or from laboratory measurement of free phenytoin are needed to improve safety and efficacy of phenytoin pharmacotherapy. The electronic medical record for an academic medical center was searched for the time period from August 1, 1996 to November 30, 2010 for patients who had total phenytoin and free phenytoin determined on the same blood draw, and also a plasma albumin measurement within 7 days of the phenytoin measurements. The measured free phenytoin plasma concentration was used as the gold standard. RESULTS In this study, the standard Sheiner-Tozer formula for calculating an estimated (adjusted) phenytoin level more frequently underestimates than overestimates the measured free phenytoin relative to the respective therapeutic ranges. Adjusted phenytoin concentrations provided superior classification of patients than total phenytoin measurements, particularly at low albumin concentrations. Albumin plasma concentrations up to 7 days prior to total phenytoin measurements can be used for adjusted phenytoin concentrations. CONCLUSIONS The results suggest that a measured free phenytoin should be obtained where possible to guide phenytoin dosing. If this is not feasible, then an adjusted phenytoin can supplement a total phenytoin concentration, particularly for patients with low plasma albumin.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010672 Phenytoin An anticonvulsant that is used to treat a wide variety of seizures. It is also an anti-arrhythmic and a muscle relaxant. The mechanism of therapeutic action is not clear, although several cellular actions have been described including effects on ion channels, active transport, and general membrane stabilization. The mechanism of its muscle relaxant effect appears to involve a reduction in the sensitivity of muscle spindles to stretch. Phenytoin has been proposed for several other therapeutic uses, but its use has been limited by its many adverse effects and interactions with other drugs. Diphenylhydantoin,Fenitoin,Phenhydan,5,5-Diphenylhydantoin,5,5-diphenylimidazolidine-2,4-dione,Antisacer,Difenin,Dihydan,Dilantin,Epamin,Epanutin,Hydantol,Phenytoin Sodium,Sodium Diphenylhydantoinate,Diphenylhydantoinate, Sodium
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Matthew D Krasowski, and Louis E Penrod
December 1984, British journal of clinical pharmacology,
Matthew D Krasowski, and Louis E Penrod
February 1990, Nihon rinsho. Japanese journal of clinical medicine,
Matthew D Krasowski, and Louis E Penrod
September 2017, Gastroenterology,
Matthew D Krasowski, and Louis E Penrod
March 1986, Zhonghua yi xue za zhi,
Matthew D Krasowski, and Louis E Penrod
February 2009, Clinical advances in hematology & oncology : H&O,
Matthew D Krasowski, and Louis E Penrod
February 2009, Clinical advances in hematology & oncology : H&O,
Matthew D Krasowski, and Louis E Penrod
October 2014, Therapeutic drug monitoring,
Matthew D Krasowski, and Louis E Penrod
October 2006, Therapeutic drug monitoring,
Copied contents to your clipboard!