Cellular localization of ovarian proopiomelanocortin messenger RNA during follicular and luteal development in the rat. 1990

S L Sanders, and M H Melner, and T E Curry
Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40536.

Opioid peptides are expressed in the reproductive system and have been reported to regulate reproductive function. The present study used in situ hybridization to selectively localize ovarian cells containing high levels of proopiomelanocortin (POMC) mRNA, an opioid precursor, during different stages of ovarian development. Prepubertal rats were primed with PMSG to stimulate follicular development, followed by hCG to induce ovulation. Treatment groups consisted of control (no treatment), PMSG (2 days post-PMSG), 1 day corpus luteum (CL; 1 day post-hCG), and 8 day CL (8 days post-hCG). POMC mRNA-containing cells were present in antral follicles, CL, and the interstitial compartment. With gonadotropin treatment, the percentage of follicles containing heavily labeled cells increased in the PMSG and 1 day CL groups. The number of POMC mRNA-containing cells per follicle also increased in the 1 day CL group. In the CL, no difference was observed in the percentage of CL exhibiting labeled cells between the 1 day CL and 8 day CL groups; however, more labeled luteal cells per CL were present in the 1 day CL group. A marked increase in POMC mRNA-containing cells was observed in the interstitial compartment of the 1 day CL group. These results indicate that the number of POMC mRNA-containing cells increases with follicular development and CL formation; however, the ovarian distribution suggests that the labeled cells could be nonendocrine cells, possibly white blood cells. The in situ hybridization findings are indicative of low total concentrations of ovarian POMC mRNA, suggesting mainly an autocrine or paracrine role for POMC or POMC-derived peptides.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D011333 Pro-Opiomelanocortin A 30-kDa protein synthesized primarily in the ANTERIOR PITUITARY GLAND and the HYPOTHALAMUS. It is also found in the skin and other peripheral tissues. Depending on species and tissues, POMC is cleaved by PROHORMONE CONVERTASES yielding various active peptides including ACTH; BETA-LIPOTROPIN; ENDORPHINS; MELANOCYTE-STIMULATING HORMONES; and others (GAMMA-LPH; CORTICOTROPIN-LIKE INTERMEDIATE LOBE PEPTIDE; N-terminal peptide of POMC or NPP). POMC,Pro-Opiocortin,ACTH-Endorphin Precursor,ACTH-beta-Lipotropin Precursor,Corticotropin-beta-Lipotropin Precursor,Endorphin-ACTH Precursor,Opiocortin,Pre-POMC,Pre-pro-opiocortin,Preproopiomelanocortin,Pro-ACTH-Endorphin,Pro-Opio-Melanocortin,Proopiocortin,Proopiomelanocortin,ACTH Endorphin Precursor,ACTH beta Lipotropin Precursor,Corticotropin beta Lipotropin Precursor,Endorphin ACTH Precursor,Pre POMC,Pre pro opiocortin,Pro ACTH Endorphin,Pro Opio Melanocortin,Pro Opiocortin,Pro Opiomelanocortin
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003338 Corpus Luteum The yellow body derived from the ruptured OVARIAN FOLLICLE after OVULATION. The process of corpus luteum formation, LUTEINIZATION, is regulated by LUTEINIZING HORMONE. Corpora Lutea,Lutea, Corpora
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D005260 Female Females
D006063 Chorionic Gonadotropin A gonadotropic glycoprotein hormone produced primarily by the PLACENTA. Similar to the pituitary LUTEINIZING HORMONE in structure and function, chorionic gonadotropin is involved in maintaining the CORPUS LUTEUM during pregnancy. CG consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is virtually identical to the alpha subunits of the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity (CHORIONIC GONADOTROPIN, BETA SUBUNIT, HUMAN). Chorionic Gonadotropin, Human,HCG (Human Chorionic Gonadotropin),Biogonadil,Choriogonadotropin,Choriogonin,Chorulon,Gonabion,Human Chorionic Gonadotropin,Pregnyl,Gonadotropin, Chorionic,Gonadotropin, Human Chorionic
D006064 Gonadotropins, Equine Gonadotropins secreted by the pituitary or the placenta in horses. This term generally refers to the gonadotropins found in the pregnant mare serum, a rich source of equine CHORIONIC GONADOTROPIN; LUTEINIZING HORMONE; and FOLLICLE STIMULATING HORMONE. Unlike that in humans, the equine LUTEINIZING HORMONE, BETA SUBUNIT is identical to the equine choronic gonadotropin, beta. Equine gonadotropins prepared from pregnant mare serum are used in reproductive studies. Pregnant Mare Serum Gonadotropins,PMS Gonadotropins,PMSG (Gonadotropins),Equine Gonadotropins,Gonadotropins, PMS
D006080 Ovarian Follicle An OOCYTE-containing structure in the cortex of the OVARY. The oocyte is enclosed by a layer of GRANULOSA CELLS providing a nourishing microenvironment (FOLLICULAR FLUID). The number and size of follicles vary depending on the age and reproductive state of the female. The growing follicles are divided into five stages: primary, secondary, tertiary, Graafian, and atretic. Follicular growth and steroidogenesis depend on the presence of GONADOTROPINS. Graafian Follicle,Atretic Follicle,Ovarian Follicles,Atretic Follicles,Follicle, Atretic,Follicle, Graafian,Follicle, Ovarian,Follicles, Atretic,Follicles, Graafian,Follicles, Ovarian,Graafian Follicles

Related Publications

S L Sanders, and M H Melner, and T E Curry
December 1991, American journal of obstetrics and gynecology,
S L Sanders, and M H Melner, and T E Curry
August 1984, Science (New York, N.Y.),
S L Sanders, and M H Melner, and T E Curry
December 2000, Bailliere's best practice & research. Clinical obstetrics & gynaecology,
S L Sanders, and M H Melner, and T E Curry
January 1992, Biology of reproduction,
S L Sanders, and M H Melner, and T E Curry
April 1999, Neuroscience letters,
S L Sanders, and M H Melner, and T E Curry
December 2012, The Journal of endocrinology,
S L Sanders, and M H Melner, and T E Curry
January 2003, International review of cytology,
S L Sanders, and M H Melner, and T E Curry
July 1992, Biochemical and biophysical research communications,
S L Sanders, and M H Melner, and T E Curry
October 1983, Developmental biology,
Copied contents to your clipboard!