Recent advances in cerebrovascular simulation and neuronavigation for the optimization of intracranial aneurysm clipping. 2012

P Marinho, and L Thines, and L Verscheure, and S Mordon, and J-P Lejeune, and M Vermandel
Clinique de Neurochirurgie, Pôle des Neurosciences et de l'Appareil Locomoteur, CHRU de Lille, Lille, France.

Endovascular treatment of intracranial aneurysms (IAs) has improved to the extent that in some instances such an approach has now become safer than surgery. This has dramatically changed clinical practice by reducing the volume and increasing the complexity of IAs referred for open surgical treatment. We review the simulation techniques and dedicated vascular neuronavigation systems that have been developed to maintain the quality of aneurysm clipping in this context. Simulation of surgical approaches was made possible by the introduction of high-resolution 3D imaging techniques such as three-dimensional CT angiography (3D-CTA) and three-dimensional digital subtraction angiography (3D-DSA), enabling reproduction of the craniotomy and rotation of the vascular tree according to the orientation of the operative microscope. A virtual simulator for compiling such data, the Dextroscope®, is now available for this purpose. Simulation of final clipping has been investigated through virtual or physical models, enabling anticipation of aneurysm deformation during clip application and selection of the appropriate clip(s) in terms of number, size, shape and orientation. To improve surgical dissection guidance, specific cerebrovascular neuronavigation procedures have been developed based on 3D-CTA or 3D-DSA. These help make the operation secure by accurately predicting the location and orientation of an aneurysm within its parenchymal and vascular environment. Future simulators dedicated to cerebrovascular procedures will need to integrate representation of the brain surface and biomechanical modeling of brain and aneurysm wall deformation under retraction or during clipping. They should contribute to training and maintenance of surgical skills, thereby optimizing the quality of surgical treatment in this field.

UI MeSH Term Description Entries
D002532 Intracranial Aneurysm Abnormal outpouching in the wall of intracranial blood vessels. Most common are the saccular (berry) aneurysms located at branch points in CIRCLE OF WILLIS at the base of the brain. Vessel rupture results in SUBARACHNOID HEMORRHAGE or INTRACRANIAL HEMORRHAGES. Giant aneurysms (>2.5 cm in diameter) may compress adjacent structures, including the OCULOMOTOR NERVE. (From Adams et al., Principles of Neurology, 6th ed, p841) Aneurysm, Cerebral,Aneurysm, Intracranial,Basilar Artery Aneurysm,Berry Aneurysm,Brain Aneurysm,Cerebral Aneurysm,Giant Intracranial Aneurysm,Mycotic Aneurysm, Intracranial,Aneurysm, Anterior Cerebral Artery,Aneurysm, Anterior Communicating Artery,Aneurysm, Basilar Artery,Aneurysm, Middle Cerebral Artery,Aneurysm, Posterior Cerebral Artery,Aneurysm, Posterior Communicating Artery,Anterior Cerebral Artery Aneurysm,Anterior Communicating Artery Aneurysm,Middle Cerebral Artery Aneurysm,Posterior Cerebral Artery Aneurysm,Posterior Communicating Artery Aneurysm,Aneurysm, Berry,Aneurysm, Brain,Aneurysm, Giant Intracranial,Aneurysm, Intracranial Mycotic,Aneurysms, Basilar Artery,Aneurysms, Berry,Aneurysms, Brain,Aneurysms, Cerebral,Aneurysms, Giant Intracranial,Aneurysms, Intracranial,Aneurysms, Intracranial Mycotic,Artery Aneurysm, Basilar,Artery Aneurysms, Basilar,Basilar Artery Aneurysms,Berry Aneurysms,Brain Aneurysms,Cerebral Aneurysms,Giant Intracranial Aneurysms,Intracranial Aneurysm, Giant,Intracranial Aneurysms,Intracranial Aneurysms, Giant,Intracranial Mycotic Aneurysm,Intracranial Mycotic Aneurysms,Mycotic Aneurysms, Intracranial
D002533 Cerebral Angiography Radiography of the vascular system of the brain after injection of a contrast medium. Angiography, Cerebral,Angiographies, Cerebral,Cerebral Angiographies
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014584 User-Computer Interface The portion of an interactive computer program that issues messages to and receives commands from a user. Interface, User Computer,Virtual Systems,User Computer Interface,Interface, User-Computer,Interfaces, User Computer,Interfaces, User-Computer,System, Virtual,Systems, Virtual,User Computer Interfaces,User-Computer Interfaces,Virtual System
D015901 Angiography, Digital Subtraction A method of delineating blood vessels by subtracting a tissue background image from an image of tissue plus intravascular contrast material that attenuates the X-ray photons. The background image is determined from a digitized image taken a few moments before injection of the contrast material. The resulting angiogram is a high-contrast image of the vessel. This subtraction technique allows extraction of a high-intensity signal from the superimposed background information. The image is thus the result of the differential absorption of X-rays by different tissues. Digital Subtraction Angiography,Subtraction Angiography, Digital
D025321 Surgery, Computer-Assisted Surgical procedures conducted with the aid of computers. Used in various types of surgery for implant placement and instrument guidance. Image-guided surgery interactively combines prior CT scans or MRI images with real-time video. Computer-Assisted Surgery,Image-Guided Surgery,Surgery, Image-Guided,Surgical Navigation,Computer-Aided Surgery,Computer Aided Surgery,Computer Assisted Surgery,Computer-Aided Surgeries,Computer-Assisted Surgeries,Image Guided Surgery,Image-Guided Surgeries,Navigation, Surgical,Surgeries, Computer-Aided,Surgeries, Computer-Assisted,Surgeries, Image-Guided,Surgery, Computer Assisted,Surgery, Computer-Aided,Surgery, Image Guided
D038361 Neuronavigation Intraoperative computer-assisted 3D navigation and guidance system generally used in neurosurgery for tracking surgical tools and localize them with respect to the patient's 3D anatomy. The pre-operative diagnostic scan is used as a reference and is transferred onto the operative field during surgery. Frameless Stereotaxy,Stereotaxy, Frameless

Related Publications

P Marinho, and L Thines, and L Verscheure, and S Mordon, and J-P Lejeune, and M Vermandel
August 2021, International journal of computer assisted radiology and surgery,
P Marinho, and L Thines, and L Verscheure, and S Mordon, and J-P Lejeune, and M Vermandel
May 1976, The West Virginia medical journal,
P Marinho, and L Thines, and L Verscheure, and S Mordon, and J-P Lejeune, and M Vermandel
January 2015, Nederlands tijdschrift voor geneeskunde,
P Marinho, and L Thines, and L Verscheure, and S Mordon, and J-P Lejeune, and M Vermandel
January 2018, Pediatric neurosurgery,
P Marinho, and L Thines, and L Verscheure, and S Mordon, and J-P Lejeune, and M Vermandel
August 2021, Data in brief,
P Marinho, and L Thines, and L Verscheure, and S Mordon, and J-P Lejeune, and M Vermandel
January 2013, Neuromodulation : journal of the International Neuromodulation Society,
P Marinho, and L Thines, and L Verscheure, and S Mordon, and J-P Lejeune, and M Vermandel
July 1962, New York state journal of medicine,
P Marinho, and L Thines, and L Verscheure, and S Mordon, and J-P Lejeune, and M Vermandel
October 2009, Neurosurgery,
P Marinho, and L Thines, and L Verscheure, and S Mordon, and J-P Lejeune, and M Vermandel
January 1980, Acta neurologica Scandinavica. Supplementum,
P Marinho, and L Thines, and L Verscheure, and S Mordon, and J-P Lejeune, and M Vermandel
January 1980, Acta neurologica Scandinavica. Supplementum,
Copied contents to your clipboard!