The matriptase-prostasin proteolytic cascade in epithelial development and pathology. 2013

Gregory S Miller, and Karin List
Department of Pharmacology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA.

The type II transmembrane serine protease matriptase has an essential role in the integrity and function of multiple epithelial tissues. In the epidermis, matriptase activates the glycosylphosphatidylinositol (GPI) anchored membrane serine protease prostasin to initiate a proteolytic cascade that is required for the development of the stratum corneum barrier function. Accordingly, mice deficient for matriptase phenocopy mice deficient for epidermal prostasin and present with impaired corneocyte differentiation, imparied lipid matrix formation, loss of profilaggrin processing and loss of tight junction formation and function. Together, these defects lead to a compromised epidermal barrier and result in fatal dehydration during the neonatal period. Proteolytic activity of the matriptase-prostasin cascade is regulated in the epidermis via inhibition by the Kunitz-type serine protease inhibitor hepatocyte growth factor activator inhibitor-1 (HAI-1). Importantly, targeted post-natal ablation of matriptase in mice perturbs the function of multiple adult tissues, indicating an ongoing requirement for matriptase proteolysis in the maintenance of diverse types of epithelia. Impaired matriptase proteolytic activity has been linked to human Autosomal Recessive Icthyosis with Hypotrichosis (ARIH), whereas aberrant matriptase activity has been implicated in Netherton's Syndrome. This review will summarize information pertaining to the role of matriptase in epithelial biology and will discuss recent advancements in our understanding of how matriptase activity is regulated and the down-stream effectors of matriptase proteolysis.

UI MeSH Term Description Entries
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012697 Serine Endopeptidases Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis. Serine Endopeptidase,Endopeptidase, Serine,Endopeptidases, Serine

Related Publications

Gregory S Miller, and Karin List
July 2020, Experimental dermatology,
Gregory S Miller, and Karin List
November 2011, Journal of medicinal chemistry,
Gregory S Miller, and Karin List
November 2006, The Journal of biological chemistry,
Gregory S Miller, and Karin List
November 2020, The Biochemical journal,
Copied contents to your clipboard!