Protein metabolism in phenylketonuria and Lesch-Nyhan syndrome. 1990

G N Thompson, and P J Pacy, and R W Watts, and D Halliday
Nutrition Research Group, Clinical Research Centre, Harrow, United Kingdom.

Animal and in vitro studies have implicated decreased protein synthesis in the pathogenesis of tissue damage in phenylketonuria (PKU) and of growth failure in Lesch-Nyhan syndrome. Protein turnover was measured in vivo in ten young adult subjects with classical PKU, two subjects with hyperphenylalaninemia, and three children with Lesch-Nyhan syndrome using techniques based on continuous infusions of [13C]leucine and, in Lesch-Nyhan subjects, [2H5]phenylalanine. The PKU subjects had various degrees of dietary phenylalanine restriction and plasma phenylalanine levels at the time of study ranged from 450-1540 mumol/L (mean 1106). Plasma phenylalanine in the two hyperphenylalaninemic subjects was 533 and 402 mumol/L. Rates of protein synthesis in all PKU subjects (mean 3.71 g/kg/24 h, range 2.68-5.10, [13C]leucine as tracer) were in a range similar to or above control values (mean 2.97, range 2.78-3.22, n = 6), as were rates of protein catabolism (PKU mean 4.23 g/kg/24 h, range 3.15-5.45; controls 3.64, 3.50-3.91). Protein turnover values in hyperphenylalaninemia were also similar to those in controls. With [13C]leucine as tracer, both mean protein synthesis and catabolism values in Lesch-Nyhan subjects (mean 4.80 and 5.64 g/kg/24 h, respectively) were higher than values in control children matched for protein intake (synthesis 4.32 +/- 0.74 (SD) and catabolism 4.85 +/- 0.57 (g/kg/24 h, n = 5). Similar results were obtained in Lesch-Nyhan subjects using [2H5]phenylalanine as tracer. These results suggest that protein turnover is not decreased in either PKU or Lesch-Nyhan syndrome. This conclusion is inconsistent with the hypothesis that tissue damage in PKU results from impaired protein synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007926 Lesch-Nyhan Syndrome An inherited disorder transmitted as a sex-linked trait and caused by a deficiency of an enzyme of purine metabolism; HYPOXANTHINE PHOSPHORIBOSYLTRANSFERASE. Affected individuals are normal in the first year of life and then develop psychomotor retardation, extrapyramidal movement disorders, progressive spasticity, and seizures. Self-destructive behaviors such as biting of fingers and lips are seen frequently. Intellectual impairment may also occur but is typically not severe. Elevation of uric acid in the serum leads to the development of renal calculi and gouty arthritis. (Menkes, Textbook of Child Neurology, 5th ed, pp127) Choreoathetosis Self-Mutilation Hyperuricemia Syndrome,Hypoxanthine-Phosphoribosyl-Transferase Deficiency Disease,Choreoathetosis Self-Mutilation Syndrome,Complete HGPRT Deficiency Disease,Complete HPRT Deficiency,Complete Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency,Deficiency Disease, Complete HGPRT,Deficiency Disease, Hypoxanthine-Phosphoribosyl-Transferase,Deficiency of Guanine Phosphoribosyltransferase,Deficiency of Hypoxanthine Phosphoribosyltransferase,HGPRT Deficiency,HGPRT Deficiency Disease, Complete,Hypoxanthine Guanine Phosphoribosyltransferase 1 Deficiency,Hypoxanthine Guanine Phosphoribosyltransferase Deficiency,Hypoxanthine Phosphoribosyltransferase Deficiency,Juvenile Gout, Choreoathetosis, Mental Retardation Syndrome,Juvenile Hyperuricemia Syndrome,Lesch-Nyhan Disease,Primary Hyperuricemia Syndrome,Total HPRT Deficiency,Total Hypoxanthine-Guanine Phosphoribosyl Transferase Deficiency,X-Linked Hyperuricemia,X-Linked Primary Hyperuricemia,Choreoathetosis Self Mutilation Hyperuricemia Syndrome,Choreoathetosis Self Mutilation Syndrome,Choreoathetosis Self-Mutilation Syndromes,Complete HPRT Deficiencies,Complete Hypoxanthine Guanine Phosphoribosyltransferase Deficiency,Deficiencies, Complete HPRT,Deficiencies, HGPRT,Deficiencies, Hypoxanthine Phosphoribosyltransferase,Deficiencies, Total HPRT,Deficiency Disease, Hypoxanthine Phosphoribosyl Transferase,Deficiency Diseases, Hypoxanthine-Phosphoribosyl-Transferase,Deficiency, Complete HPRT,Deficiency, HGPRT,Deficiency, Hypoxanthine Phosphoribosyltransferase,Deficiency, Total HPRT,Guanine Phosphoribosyltransferase Deficiencies,Guanine Phosphoribosyltransferase Deficiency,HGPRT Deficiencies,HPRT Deficiencies, Complete,HPRT Deficiencies, Total,HPRT Deficiency, Complete,HPRT Deficiency, Total,Hyperuricemia Syndrome, Juvenile,Hyperuricemia Syndrome, Primary,Hyperuricemia Syndromes, Juvenile,Hyperuricemia Syndromes, Primary,Hyperuricemia, X-Linked,Hyperuricemia, X-Linked Primary,Hyperuricemias, X-Linked,Hyperuricemias, X-Linked Primary,Hypoxanthine Phosphoribosyl Transferase Deficiency Disease,Hypoxanthine Phosphoribosyltransferase Deficiencies,Hypoxanthine-Phosphoribosyl-Transferase Deficiency Diseases,Juvenile Hyperuricemia Syndromes,Lesch Nyhan Disease,Lesch Nyhan Syndrome,Phosphoribosyltransferase Deficiencies, Guanine,Phosphoribosyltransferase Deficiencies, Hypoxanthine,Phosphoribosyltransferase Deficiency, Guanine,Phosphoribosyltransferase Deficiency, Hypoxanthine,Primary Hyperuricemia Syndromes,Primary Hyperuricemia, X-Linked,Primary Hyperuricemias, X-Linked,Self-Mutilation Syndrome, Choreoathetosis,Self-Mutilation Syndromes, Choreoathetosis,Syndrome, Choreoathetosis Self-Mutilation,Syndrome, Juvenile Hyperuricemia,Syndrome, Primary Hyperuricemia,Syndromes, Choreoathetosis Self-Mutilation,Syndromes, Juvenile Hyperuricemia,Syndromes, Primary Hyperuricemia,Total HPRT Deficiencies,Total Hypoxanthine Guanine Phosphoribosyl Transferase Deficiency,X Linked Hyperuricemia,X Linked Primary Hyperuricemia,X-Linked Hyperuricemias,X-Linked Primary Hyperuricemias
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D010661 Phenylketonurias A group of autosomal recessive disorders marked by a deficiency of the hepatic enzyme PHENYLALANINE HYDROXYLASE or less frequently by reduced activity of DIHYDROPTERIDINE REDUCTASE (i.e., atypical phenylketonuria). Classical phenylketonuria is caused by a severe deficiency of phenylalanine hydroxylase and presents in infancy with developmental delay; SEIZURES; skin HYPOPIGMENTATION; ECZEMA; and demyelination in the central nervous system. (From Adams et al., Principles of Neurology, 6th ed, p952). Biopterin Deficiency,Dihydropteridine Reductase Deficiency Disease,Hyperphenylalaninemia, Non-Phenylketonuric,Phenylalanine Hydroxylase Deficiency Disease,BH4 Deficiency,DHPR Deficiency,Deficiency Disease, Dihydropteridine Reductase,Deficiency Disease, Phenylalanine Hydroxylase,Deficiency Disease, Phenylalanine Hydroxylase, Severe,Dihydropteridine Reductase Deficiency,Folling Disease,Folling's Disease,HPABH4C,Hyperphenylalaninaemia,Hyperphenylalaninemia Caused by a Defect in Biopterin Metabolism,Hyperphenylalaninemia, BH4-Deficient, C,Hyperphenylalaninemia, Tetrahydrobiopterin-Deficient, Due To DHPR Deficiency,Non-Phenylketonuric Hyperphenylalaninemia,Oligophrenia Phenylpyruvica,PAH Deficiency,PKU, Atypical,Phenylalanine Hydroxylase Deficiency,Phenylalanine Hydroxylase Deficiency Disease, Severe,Phenylketonuria,Phenylketonuria I,Phenylketonuria II,Phenylketonuria Type 2,Phenylketonuria, Atypical,Phenylketonuria, Classical,QDPR Deficiency,Quinoid Dihydropteridine Reductase Deficiency,Tetrahydrobiopterin Deficiency,Atypical PKU,Atypical Phenylketonuria,Biopterin Deficiencies,Classical Phenylketonuria,Deficiency, BH4,Deficiency, Biopterin,Deficiency, DHPR,Deficiency, Dihydropteridine Reductase,Deficiency, PAH,Deficiency, Phenylalanine Hydroxylase,Deficiency, QDPR,Deficiency, Tetrahydrobiopterin,Disease, Folling,Disease, Folling's,Hyperphenylalaninemia, Non Phenylketonuric,Non Phenylketonuric Hyperphenylalaninemia,Non-Phenylketonuric Hyperphenylalaninemias
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D005260 Female Females
D006130 Growth Disorders Deviations from the average values for a specific age and sex in any or all of the following: height, weight, skeletal proportions, osseous development, or maturation of features. Included here are both acceleration and retardation of growth. Stunted Growth,Stunting,Disorder, Growth,Growth Disorder,Growth, Stunted,Stuntings
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

G N Thompson, and P J Pacy, and R W Watts, and D Halliday
December 1974, Orvosi hetilap,
G N Thompson, and P J Pacy, and R W Watts, and D Halliday
November 1982, Urology,
G N Thompson, and P J Pacy, and R W Watts, and D Halliday
February 1975, Nihon rinsho. Japanese journal of clinical medicine,
G N Thompson, and P J Pacy, and R W Watts, and D Halliday
January 1971, Nordisk medicin,
G N Thompson, and P J Pacy, and R W Watts, and D Halliday
November 1982, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons,
G N Thompson, and P J Pacy, and R W Watts, and D Halliday
January 1977, Nihon rinsho. Japanese journal of clinical medicine,
G N Thompson, and P J Pacy, and R W Watts, and D Halliday
December 1989, Archivio stomatologico,
G N Thompson, and P J Pacy, and R W Watts, and D Halliday
September 1971, [Kango gijutsu] : [Nursing technique],
G N Thompson, and P J Pacy, and R W Watts, and D Halliday
April 1993, Indian pediatrics,
G N Thompson, and P J Pacy, and R W Watts, and D Halliday
January 1973, Monatsschrift fur Kinderheilkunde,
Copied contents to your clipboard!