Phrenic nerve responses to lung inflation and hypercapnia in decerebrate dogs. 1990

G S Mitchell
Department of Comparative Biosciences, University of Wisconsin, Madison 53706.

The effects of changes in static airway pressure (Paw) and arterial PCO2 (PaCO2) on phrenic nerve activity were studied in unanesthetized, decerebrate dogs and compared with previous results from chloralose/urethane anesthetized dogs using the same experimental preparation (Mitchell et al. 1982; Mitchell and Selby 1987). In ten mid-collicular decerebrate dogs, the lungs were independently ventilated while the left pulmonary artery was occluded and the right vagus nerve was transected. Changes in left lung Paw, therefore, exerted effects on pulmonary stretch receptors without altering blood gases; changes in the inspired gas ventilating the right lung controlled blood gas composition, without altering lung volume feedback. Phrenic burst frequency (f) and integrated amplitude (Phr) were monitored while Paw was varied between 2 and 12 cmH2O at various constant levels of PaCO2 between 31 and 69 mmHg. The major findings of this study are: (1) hypercapnia decreases the slope of the relationship between expiratory duration (tE) and Paw in both decerebrated and anesthetized dogs; (2) hypercapnia increases the inspiratory duration (tI) in decerebrated, but not anesthetized dogs; and (3) hypercapnia decreases the slope of the relationship between f and Paw due to these effects on tE and tI. These results support previous studies indicating that vagal and suprapontine mechanisms exert independent effects on respiratory timing. It is concluded that neither suprapontine influences nor anesthesia are necessary in the mechanism underlying interactions between stretch receptors and CO2-chemoreceptors in modulating tE. Furthermore, decerebration reveals a unique effect of CO2-chemoreceptors on tI, an effect found in anesthetized dogs only after carotid denervation.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D010791 Phrenic Nerve The motor nerve of the diaphragm. The phrenic nerve fibers originate in the cervical spinal column (mostly C4) and travel through the cervical plexus to the diaphragm. Nerve, Phrenic,Nerves, Phrenic,Phrenic Nerves
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006935 Hypercapnia A clinical manifestation of abnormal increase in the amount of carbon dioxide in arterial blood.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G S Mitchell
October 2016, Respiratory physiology & neurobiology,
G S Mitchell
January 1995, Journal of applied physiology (Bethesda, Md. : 1985),
G S Mitchell
February 1983, Journal of applied physiology: respiratory, environmental and exercise physiology,
G S Mitchell
February 1974, The American journal of physiology,
G S Mitchell
June 1979, Journal of applied physiology: respiratory, environmental and exercise physiology,
G S Mitchell
March 1988, Journal of anesthesia,
Copied contents to your clipboard!