Immunomodulation of antigen presenting cells promotes natural regulatory T cells that prevent autoimmune diabetes in NOD mice. 2012

Martin J Richer, and Danielle J Lavallée, and Iryna Shanina, and Marc S Horwitz
Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada.

Progression towards type 1 diabetes (T1D) in susceptible patients is linked to a progressive decline in the capacity of regulatory T cells (Treg) to maintain tolerance. As such, therapies aimed at redressing the failing Treg compartment have been the subject of intense investigation. Treg dysfunction in T1D has recently been linked to a reduced capacity of antigen presenting cells (APCs) to maintain Treg function rather than Treg intrinsic defects. This suggests that therapies aimed simply at addressing the failing Treg compartment are unlikely to provide long-term protection. Here, we demonstrate that modulation of the inflammatory status of CD11b+CD11c- APCs favors the upregulation of protective Tregs in a mouse model of T1D. We further demonstrate that reduced expression of the costimulatory molecule CD40 plays a role in this increased immunoregulatory capacity. Strikingly, Treg upregulation resulted exclusively from an increase in natural Tregs rather than the peripheral conversion of conventional T cells. This suggests that modulation of CD11b+ CD11c- APCs inflammatory properties favors the establishment of natural Treg responses that, unlike adaptive Treg responses, are likely to maintain tolerance to a broad range of antigens. As such, modulation of this APC subset represents a potential therapeutic avenue to reestablish peripheral tolerance and protect from autoimmune diseases such as T1D.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000938 Antigen-Presenting Cells A heterogeneous group of immunocompetent cells that mediate the cellular immune response by processing and presenting antigens to the T-cells. Traditional antigen-presenting cells include MACROPHAGES; DENDRITIC CELLS; LANGERHANS CELLS; and B-LYMPHOCYTES. FOLLICULAR DENDRITIC CELLS are not traditional antigen-presenting cells, but because they hold antigen on their cell surface in the form of IMMUNE COMPLEXES for B-cell recognition they are considered so by some authors. Accessory Cells, Immunologic,Antigen-Presenting Cell,Immunologic Accessory Cells,Accessory Cell, Immunologic,Cell, Immunologic Accessory,Cells, Immunologic Accessory,Immunologic Accessory Cell,Antigen Presenting Cell,Antigen Presenting Cells,Cell, Antigen-Presenting,Cells, Antigen-Presenting
D016688 Mice, Inbred NOD A strain of non-obese diabetic mice developed in Japan that has been widely studied as a model for T-cell-dependent autoimmune insulin-dependent diabetes mellitus in which insulitis is a major histopathologic feature, and in which genetic susceptibility is strongly MHC-linked. Non-Obese Diabetic Mice,Mice, NOD,Mouse, Inbred NOD,Mouse, NOD,Non-Obese Diabetic Mouse,Nonobese Diabetic Mice,Nonobese Diabetic Mouse,Diabetic Mice, Non-Obese,Diabetic Mice, Nonobese,Diabetic Mouse, Non-Obese,Diabetic Mouse, Nonobese,Inbred NOD Mice,Inbred NOD Mouse,Mice, Non-Obese Diabetic,Mice, Nonobese Diabetic,Mouse, Non-Obese Diabetic,Mouse, Nonobese Diabetic,NOD Mice,NOD Mice, Inbred,NOD Mouse,NOD Mouse, Inbred,Non Obese Diabetic Mice,Non Obese Diabetic Mouse

Related Publications

Martin J Richer, and Danielle J Lavallée, and Iryna Shanina, and Marc S Horwitz
January 1992, Regional immunology,
Martin J Richer, and Danielle J Lavallée, and Iryna Shanina, and Marc S Horwitz
January 2008, PloS one,
Martin J Richer, and Danielle J Lavallée, and Iryna Shanina, and Marc S Horwitz
August 2011, Diabetologia,
Martin J Richer, and Danielle J Lavallée, and Iryna Shanina, and Marc S Horwitz
October 2008, Journal of immunology (Baltimore, Md. : 1950),
Martin J Richer, and Danielle J Lavallée, and Iryna Shanina, and Marc S Horwitz
February 2016, Inflammation,
Martin J Richer, and Danielle J Lavallée, and Iryna Shanina, and Marc S Horwitz
November 2023, The Journal of experimental medicine,
Martin J Richer, and Danielle J Lavallée, and Iryna Shanina, and Marc S Horwitz
June 1996, Journal of autoimmunity,
Martin J Richer, and Danielle J Lavallée, and Iryna Shanina, and Marc S Horwitz
November 2023, The Journal of experimental medicine,
Martin J Richer, and Danielle J Lavallée, and Iryna Shanina, and Marc S Horwitz
August 2011, Autoimmunity,
Martin J Richer, and Danielle J Lavallée, and Iryna Shanina, and Marc S Horwitz
April 2006, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!