Gender-specific bacterial composition of black flies (Diptera: Simuliidae). 2012

Xiaoshu Tang, and Peter H Adler, and Heiko Vogel, and Liyan Ping
Department of Bioorganic Chemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany.

Although hematophagous black flies are well-known socioeconomic pests and vectors of disease agents, their associated bacteria are poorly known. A systematic analysis of the bacterial community associated with freshly emerged adult black flies of four North American species, using cultivation-independent molecular techniques, revealed 75 nonsingleton bacterial phylotypes. Although 17 cosmopolitan phylotypes were shared among host species, each fly species had a distinct bacterial profile. The bacterial composition, however, did not correlate strongly with the host phylogeny but differed between male and female flies of the same species from the same habitat, demonstrating that a group of insects have a gender-dependent bacterial community. In general, female flies harbor a less diverse bacterial community than do males. The anatomical locations of selected bacteria were revealed using fluorescence in situ hybridization. Understanding the physiological function of the associated bacterial community could provide clues for developing novel pest-management strategies.

UI MeSH Term Description Entries
D008297 Male Males
D009656 North America The northern continent of the Western Hemisphere, extending northward from the Colombia-Panama border and including CENTRAL AMERICA, MEXICO, Caribbean area, the UNITED STATES, CANADA and GREENLAND. The term often refers more narrowly to MEXICO, continental UNITED STATES, AND CANADA. Northern America
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D012336 RNA, Ribosomal, 16S Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis. 16S Ribosomal RNA,16S rRNA,RNA, 16S Ribosomal,Ribosomal RNA, 16S,rRNA, 16S
D012727 Sex Characteristics Those characteristics that distinguish one SEX from the other. The primary sex characteristics are the OVARIES and TESTES and their related hormones. Secondary sex characteristics are those which are masculine or feminine but not directly related to reproduction. Gender Characteristics,Gender Differences,Gender Dimorphism,Sex Differences,Sex Dimorphism,Sexual Dichromatism,Sexual Dimorphism,Characteristic, Gender,Characteristic, Sex,Dichromatism, Sexual,Dichromatisms, Sexual,Difference, Sex,Dimorphism, Gender,Dimorphism, Sex,Dimorphism, Sexual,Gender Characteristic,Gender Difference,Gender Dimorphisms,Sex Characteristic,Sex Difference,Sex Dimorphisms,Sexual Dichromatisms,Sexual Dimorphisms
D012843 Simuliidae A family of insects in the order DIPTERA, which include black flies, buffalo gnats and simulies. Several species are intermediate hosts (vectors) for the parasitic disease ONCHOCERCIASIS. Black Flies,Simulium,Blackflies,Black Fly,Blackfly,Flies, Black,Fly, Black,Simuliums

Related Publications

Xiaoshu Tang, and Peter H Adler, and Heiko Vogel, and Liyan Ping
July 1981, Journal of nematology,
Xiaoshu Tang, and Peter H Adler, and Heiko Vogel, and Liyan Ping
January 2013, Zootaxa,
Xiaoshu Tang, and Peter H Adler, and Heiko Vogel, and Liyan Ping
May 2017, Zootaxa,
Xiaoshu Tang, and Peter H Adler, and Heiko Vogel, and Liyan Ping
May 1969, Journal of medical entomology,
Xiaoshu Tang, and Peter H Adler, and Heiko Vogel, and Liyan Ping
January 1974, Parazitologiia,
Xiaoshu Tang, and Peter H Adler, and Heiko Vogel, and Liyan Ping
September 2018, Acta tropica,
Xiaoshu Tang, and Peter H Adler, and Heiko Vogel, and Liyan Ping
May 1984, Journal of morphology,
Xiaoshu Tang, and Peter H Adler, and Heiko Vogel, and Liyan Ping
September 1979, Journal of medical entomology,
Xiaoshu Tang, and Peter H Adler, and Heiko Vogel, and Liyan Ping
January 2022, ZooKeys,
Xiaoshu Tang, and Peter H Adler, and Heiko Vogel, and Liyan Ping
July 2023, Parasites & vectors,
Copied contents to your clipboard!