DNA mismatch repair in Xenopus egg extracts: repair efficiency and DNA repair synthesis for all single base-pair mismatches. 1990

I Varlet, and M Radman, and P Brooks
Institut Jacques Monod, Centre National de la Recherche Scientifique, Paris, France.

Repair of all 12 single base-pair mismatches by Xenopus egg extracts was measured by a physical assay with a sequence containing four overlapping restriction sites. The heteroduplex substrates, derivatives of M13 phage DNA, differed in sequence at the mismatch position only and permitted measurement of repair to both strands. The efficiency of repair varied about 4-fold between the most and least effectively repaired mismatches. Repair was most active with C/A and T/C mismatches but the efficiency varied depending on the orientation of the mismatch. Mismatch-specific DNA repair synthesis was also observed but the extent of repair was not always predictive of the extent of synthesis, suggesting the presence of different repair systems or different modes of mismatch recognition.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009692 Nucleic Acid Heteroduplexes Double-stranded nucleic acid molecules (DNA-DNA or DNA-RNA) which contain regions of nucleotide mismatches (non-complementary). In vivo, these heteroduplexes can result from mutation or genetic recombination; in vitro, they are formed by nucleic acid hybridization. Electron microscopic analysis of the resulting heteroduplexes facilitates the mapping of regions of base sequence homology of nucleic acids. Heteroduplexes, Nucleic Acid,Heteroduplex DNA,Acid Heteroduplexes, Nucleic,DNA, Heteroduplex
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

I Varlet, and M Radman, and P Brooks
January 1984, Cold Spring Harbor symposia on quantitative biology,
I Varlet, and M Radman, and P Brooks
January 2000, Neoplasma,
I Varlet, and M Radman, and P Brooks
June 1989, Proceedings of the National Academy of Sciences of the United States of America,
I Varlet, and M Radman, and P Brooks
January 1985, Proceedings of the National Academy of Sciences of the United States of America,
I Varlet, and M Radman, and P Brooks
August 1983, Proceedings of the National Academy of Sciences of the United States of America,
I Varlet, and M Radman, and P Brooks
April 1986, Biochemical Society transactions,
I Varlet, and M Radman, and P Brooks
January 2005, DNA repair,
I Varlet, and M Radman, and P Brooks
January 2019, Methods in molecular biology (Clifton, N.J.),
I Varlet, and M Radman, and P Brooks
June 2012, Methods (San Diego, Calif.),
Copied contents to your clipboard!