Aminoglycoside 2''-phosphotransferase IIIa (APH(2'')-IIIa) prefers GTP over ATP: structural templates for nucleotide recognition in the bacterial aminoglycoside-2'' kinases. 2012

Clyde A Smith, and Marta Toth, and Hilary Frase, and Laura J Byrnes, and Sergei B Vakulenko
Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California 94025, USA. csmith@slac.stanford.edu

Contrary to the accepted dogma that ATP is the canonical phosphate donor in aminoglycoside kinases and protein kinases, it was recently demonstrated that all members of the bacterial aminoglycoside 2''-phosphotransferase IIIa (APH(2'')) aminoglycoside kinase family are unique in their ability to utilize GTP as a cofactor for antibiotic modification. Here we describe the structural determinants for GTP recognition in these enzymes. The crystal structure of the GTP-dependent APH(2'')-IIIa shows that although this enzyme has templates for both ATP and GTP binding superimposed on a single nucleotide specificity motif, access to the ATP-binding template is blocked by a bulky tyrosine residue. Substitution of this tyrosine by a smaller amino acid opens access to the ATP template. Similar GTP binding templates are conserved in other bacterial aminoglycoside kinases, whereas in the structurally related eukaryotic protein kinases this template is less conserved. The aminoglycoside kinases are important antibiotic resistance enzymes in bacteria, whose wide dissemination severely limits available therapeutic options, and the GTP binding templates could be exploited as new, previously unexplored targets for inhibitors of these clinically important enzymes.

UI MeSH Term Description Entries
D003461 Crystallography The branch of science that deals with the geometric description of crystals and their internal arrangement. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystallographies
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000617 Aminoglycosides Glycosylated compounds in which there is an amino substituent on the glycoside. Some of them are clinically important ANTIBIOTICS. Aminoglycoside
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D017346 Protein Serine-Threonine Kinases A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors. Protein-Serine-Threonine Kinases,Serine-Threonine Protein Kinase,Serine-Threonine Protein Kinases,Protein-Serine Kinase,Protein-Serine-Threonine Kinase,Protein-Threonine Kinase,Serine Kinase,Serine-Threonine Kinase,Serine-Threonine Kinases,Threonine Kinase,Kinase, Protein-Serine,Kinase, Protein-Serine-Threonine,Kinase, Protein-Threonine,Kinase, Serine-Threonine,Kinases, Protein Serine-Threonine,Kinases, Protein-Serine-Threonine,Kinases, Serine-Threonine,Protein Kinase, Serine-Threonine,Protein Kinases, Serine-Threonine,Protein Serine Kinase,Protein Serine Threonine Kinase,Protein Serine Threonine Kinases,Protein Threonine Kinase,Serine Threonine Kinase,Serine Threonine Kinases,Serine Threonine Protein Kinase,Serine Threonine Protein Kinases
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures
D017853 Phosphotransferases (Alcohol Group Acceptor) A group of enzymes that transfers a phosphate group onto an alcohol group acceptor. EC 2.7.1.
D024881 Drug Resistance, Bacterial The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance, Bacterial,Antibacterial Drug Resistance

Related Publications

Clyde A Smith, and Marta Toth, and Hilary Frase, and Laura J Byrnes, and Sergei B Vakulenko
July 1996, Biochemistry,
Clyde A Smith, and Marta Toth, and Hilary Frase, and Laura J Byrnes, and Sergei B Vakulenko
November 1994, Biochemistry,
Clyde A Smith, and Marta Toth, and Hilary Frase, and Laura J Byrnes, and Sergei B Vakulenko
April 2012, The Journal of biological chemistry,
Clyde A Smith, and Marta Toth, and Hilary Frase, and Laura J Byrnes, and Sergei B Vakulenko
March 2008, The Journal of biological chemistry,
Clyde A Smith, and Marta Toth, and Hilary Frase, and Laura J Byrnes, and Sergei B Vakulenko
June 2002, Biochemistry,
Clyde A Smith, and Marta Toth, and Hilary Frase, and Laura J Byrnes, and Sergei B Vakulenko
July 2009, Antimicrobial agents and chemotherapy,
Clyde A Smith, and Marta Toth, and Hilary Frase, and Laura J Byrnes, and Sergei B Vakulenko
July 2001, Biochemistry,
Clyde A Smith, and Marta Toth, and Hilary Frase, and Laura J Byrnes, and Sergei B Vakulenko
January 1992, SAAS bulletin, biochemistry and biotechnology,
Clyde A Smith, and Marta Toth, and Hilary Frase, and Laura J Byrnes, and Sergei B Vakulenko
October 1999, The Journal of biological chemistry,
Copied contents to your clipboard!