Tetraplex formation of a guanine-containing nonameric DNA fragment. 1990

R Z Jin, and K J Breslauer, and R A Jones, and B L Gaffney
Department of Chemistry, Rutgers, State University of New Jersey, Piscataway 08855.

A combination of spectroscopic and calorimetric techniques has been used to characterize the structures formed by a family of short, guanine-containing DNA single strands of the form d[GGTTXTTGG], X = A, C, G, T. In 1 molar NaCl at low temperatures, these molecules do not behave like single strands, but rather exhibit properties consistent with tetraplex formation. The standard state enthalpies, entropies, and free energies for formation of each tetraplex have been measured, as have preliminary nuclear magnetic resonance (NMR) spectra. In 1 molar KCl, the melting behavior of the structure or structures is more complex than in 1 molar NaCl. This observation may be related to the recently proposed "sodium-potassium switch."

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006147 Guanine
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

R Z Jin, and K J Breslauer, and R A Jones, and B L Gaffney
October 1997, Biophysical journal,
R Z Jin, and K J Breslauer, and R A Jones, and B L Gaffney
December 2001, European biophysics journal : EBJ,
R Z Jin, and K J Breslauer, and R A Jones, and B L Gaffney
December 2020, Biophysical chemistry,
R Z Jin, and K J Breslauer, and R A Jones, and B L Gaffney
January 2021, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry,
R Z Jin, and K J Breslauer, and R A Jones, and B L Gaffney
June 1999, The Journal of biological chemistry,
R Z Jin, and K J Breslauer, and R A Jones, and B L Gaffney
January 2002, Nucleic acids research. Supplement (2001),
R Z Jin, and K J Breslauer, and R A Jones, and B L Gaffney
March 1998, Nucleic acids research,
R Z Jin, and K J Breslauer, and R A Jones, and B L Gaffney
May 2006, Biochemical and biophysical research communications,
R Z Jin, and K J Breslauer, and R A Jones, and B L Gaffney
January 2005, Nucleic acids research,
R Z Jin, and K J Breslauer, and R A Jones, and B L Gaffney
July 1994, Science (New York, N.Y.),
Copied contents to your clipboard!