Structure and hibernation-associated expression of the transient receptor potential vanilloid 4 channel (TRPV4) mRNA in the Japanese grass lizard (Takydromus tachydromoides). 2012

Kazuya Nagai, and Yasushi Saitoh, and Shigeru Saito, and Ken-ichi Tsutsumi
United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, Japan.

Animals possess systems for sensing environmental temperature using temperature-sensitive ion channels called transient receptor potential channels (TRPs). Various TRPs have been identified and characterized in mammals. However, those of ectotherms, such as reptiles, are less well studied. Here, we identify the V subfamily of TRP (TRPV) in two reptile species: Japanese grass lizard (Takydromus tachydromoides) and Japanese four-lined ratsnake (Elaphe quadrivirgata). Phylogenetic analysis of TRPVs indicated that ectothermic reptilian TRPVs are more similar to those of endothermic chicken and mammals, than to other ectotherms, such as frog and fish. Expression analysis of TRPV4 mRNA in the lizard showed that its expression in tissues and organs is specifically controlled in cold environments and hibernation. The mRNA was ubiquitously expressed in seven tissues/organs examined. Both cold-treatment and hibernation lowered TRPV4 expression, but in a tissue/organ-specific manner. Cold-treatment reduced TRPV4 expression in tongue and muscle, while in hibernation it was reduced more widely in brain, tongue, heart, lung, and muscle. Interestingly, however, levels of TRPV4 mRNA in the skin remained unaffected after entering hibernation and cold-treatment, implying that TRPV4 in the skin may act as an environmental temperature sensor throughout the reptilian life cycle, including hibernation. This is the first report, to our knowledge, to describe reptilian TRPV4 in relation to hibernation.

UI MeSH Term Description Entries
D008116 Lizards Reptiles within the order Squamata that generally possess limbs, moveable EYELIDS, and EXTERNAL EAR openings, although there are some species which lack one or more of these structures. Chameleons,Geckos,Chameleon,Gecko,Lizard
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006605 Hibernation The dormant state in which some warm-blooded animal species pass the winter. It is characterized by narcosis and by sharp reduction in body temperature and metabolic activity and by a depression of vital signs. Hibernation, Artificial,Induced Hibernation,Artificial Hibernation,Artificial Hibernations,Hibernation, Induced,Hibernations,Induced Hibernations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D050916 TRPV Cation Channels A subgroup of TRP cation channels named after the vanilloid receptor. They are very sensitive to TEMPERATURE; hot spicy food, and CAPSAICIN. They contain a TRP domain (a five-turn amphipathic helix with an invariant TRYPTOPHAN) and ANKYRIN repeats. Selectivity for CALCIUM over SODIUM ranges from 3 to 100 fold. Capsaicin Receptor,Vanilloid Receptor,Capsaicin Receptors,Vanilloid Receptors,Cation Channels, TRPV,Channels, TRPV Cation,Receptor, Capsaicin,Receptor, Vanilloid,Receptors, Capsaicin,Receptors, Vanilloid

Related Publications

Kazuya Nagai, and Yasushi Saitoh, and Shigeru Saito, and Ken-ichi Tsutsumi
October 2010, Tissue & cell,
Kazuya Nagai, and Yasushi Saitoh, and Shigeru Saito, and Ken-ichi Tsutsumi
September 2010, Progress in biophysics and molecular biology,
Kazuya Nagai, and Yasushi Saitoh, and Shigeru Saito, and Ken-ichi Tsutsumi
April 1999, Tissue & cell,
Kazuya Nagai, and Yasushi Saitoh, and Shigeru Saito, and Ken-ichi Tsutsumi
June 1992, Kaibogaku zasshi. Journal of anatomy,
Kazuya Nagai, and Yasushi Saitoh, and Shigeru Saito, and Ken-ichi Tsutsumi
May 1969, The Journal of protozoology,
Kazuya Nagai, and Yasushi Saitoh, and Shigeru Saito, and Ken-ichi Tsutsumi
September 2007, Neuroscience,
Kazuya Nagai, and Yasushi Saitoh, and Shigeru Saito, and Ken-ichi Tsutsumi
January 2022, Current topics in membranes,
Kazuya Nagai, and Yasushi Saitoh, and Shigeru Saito, and Ken-ichi Tsutsumi
November 2011, Experimental eye research,
Kazuya Nagai, and Yasushi Saitoh, and Shigeru Saito, and Ken-ichi Tsutsumi
December 2003, The Journal of biological chemistry,
Kazuya Nagai, and Yasushi Saitoh, and Shigeru Saito, and Ken-ichi Tsutsumi
March 2022, Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics,
Copied contents to your clipboard!