Short-term high-resolution imaging of developing hippocampal neurons in culture. 2012

Stefanie Kaech, and Chun-Fang Huang, and Gary Banker

Dissociated cell cultures of the rodent hippocampus have become a standard model for studying many facets of neural development. The cultures are quite homogeneous and it is relatively easy to express green fluorescent protein (GFP)-tagged proteins by transfection. Because the cultures are essentially two dimensional, there is no need to acquire images at multiple focal planes. For capturing rapid subcellular events at high resolution, as described here, one must maximize weak signals and reduce background fluorescence. Thus, these methods differ in several respects from those used for time-lapse imaging. Lipofectamine-mediated transfection yields a higher level of expression than does transfection with a nucleofection device. Images are usually collected with a spinning-disk confocal microscope, which improves the signal-to-noise ratio. In addition, we use an imaging medium designed to minimize background fluorescence rather than to enhance long-term cell survival. It is also important to select cultures at an appropriate stage of development. In our hands, lipofectamine-based transfection works best on cells between 3 and 10 d after plating. GFP-based fluorescence can be observed as early as 4 h after adding the DNA/lipid complexes to the cells, but expression usually increases over the next ∼12 h and remains steady for days. The ratio of DNA to lipid is critical; to lower expression levels of the tagged construct, we use a combination of expression vector and empty plasmid, keeping the DNA amount constant. An example is included to illustrate the imaging of the microtubule-based vesicular transport of membrane proteins.

UI MeSH Term Description Entries
D008164 Luminescent Proteins Proteins which are involved in the phenomenon of light emission in living systems. Included are the "enzymatic" and "non-enzymatic" types of system with or without the presence of oxygen or co-factors. Bioluminescent Protein,Bioluminescent Proteins,Luminescent Protein,Photoprotein,Photoproteins,Protein, Bioluminescent,Protein, Luminescent,Proteins, Bioluminescent,Proteins, Luminescent
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003584 Cytological Techniques Methods used to study CELLS. Cytologic Technics,Cytological Technic,Cytological Technics,Cytological Technique,Technic, Cytological,Technics, Cytological,Technique, Cytological,Techniques, Cytological,Cytologic Technic,Technic, Cytologic,Technics, Cytologic
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013194 Staining and Labeling The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts. Histological Labeling,Staining,Histological Labelings,Labeling and Staining,Labeling, Histological,Labelings, Histological,Stainings
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Stefanie Kaech, and Chun-Fang Huang, and Gary Banker
April 1997, Journal of neuroscience methods,
Stefanie Kaech, and Chun-Fang Huang, and Gary Banker
January 2002, Epilepsia,
Stefanie Kaech, and Chun-Fang Huang, and Gary Banker
May 2004, Current protocols in neuroscience,
Stefanie Kaech, and Chun-Fang Huang, and Gary Banker
January 2020, Cell discovery,
Stefanie Kaech, and Chun-Fang Huang, and Gary Banker
October 2003, Synapse (New York, N.Y.),
Stefanie Kaech, and Chun-Fang Huang, and Gary Banker
May 2020, Science advances,
Stefanie Kaech, and Chun-Fang Huang, and Gary Banker
January 2017, Developmental cell,
Stefanie Kaech, and Chun-Fang Huang, and Gary Banker
March 2023, STAR protocols,
Stefanie Kaech, and Chun-Fang Huang, and Gary Banker
December 2023, Metallomics : integrated biometal science,
Stefanie Kaech, and Chun-Fang Huang, and Gary Banker
December 2013, Science signaling,
Copied contents to your clipboard!