Viscoelastic properties of the slowly adapting stretch receptor muscle of the crayfish. 1990

B Rydqvist, and C Swerup, and J Lännergren
Department of Physiology, Karolinska Institutet, Stockholm, Sweden.

The viscoelastic properties of the muscle associated with the slowly adapting stretch receptor organ of the crayfish (Astacus astacus) were studied by recording the tension response to various length changes. When steady-state length changes were applied to the muscle, the tension developed in a non-linear way, increasing slowly for small extensions and rapidly when extension increased. Muscle tension responses to ramp-and-hold extensions were characterized by a transient peak followed by a gradual decline in tension. At the onset of the ramp the tension increased rapidly, similar to the response seen in resting skeletal muscle. The relation between peak dynamic tension and extension was non-linear. In a log-log plot the relation was linear with a mean slope of 1.4. At small extensions (less than 5%) the slope seemed to be lower. The experimental results have been analysed in relation to a viscoelastic model consisting of a Voigt element in series with a non-linear spring. The model could describe both the static length-tension relation and the dynamic response, but different parameters for the springs had to be used for the two cases. When the measured tension response was transformed by an exponential function of the squared tension, in accord with recent findings on stretch-activated channels, a good agreement was obtained with the time course of the receptor currents. Adaptation is thus likely to be caused by both the mechanical properties of the receptor muscle and the characteristics of stretch-activated channels of the neuron.

UI MeSH Term Description Entries
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009129 Muscle Tonus The state of activity or tension of a muscle beyond that related to its physical properties, that is, its active resistance to stretch. In skeletal muscle, tonus is dependent upon efferent innervation. (Stedman, 25th ed) Muscle Tension,Muscle Tightness,Muscular Tension,Tension, Muscle,Tension, Muscular,Tightness, Muscle,Tonus, Muscle
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

B Rydqvist, and C Swerup, and J Lännergren
August 1980, Acta physiologica Scandinavica,
B Rydqvist, and C Swerup, and J Lännergren
June 1970, Acta physiologica Scandinavica,
B Rydqvist, and C Swerup, and J Lännergren
November 1966, Kybernetik,
B Rydqvist, and C Swerup, and J Lännergren
November 1973, Journal of neurophysiology,
B Rydqvist, and C Swerup, and J Lännergren
September 1971, Journal of neurophysiology,
B Rydqvist, and C Swerup, and J Lännergren
February 1994, Acta physiologica Scandinavica,
B Rydqvist, and C Swerup, and J Lännergren
January 1974, Pflugers Archiv : European journal of physiology,
B Rydqvist, and C Swerup, and J Lännergren
January 1968, Pflugers Archiv : European journal of physiology,
B Rydqvist, and C Swerup, and J Lännergren
November 1972, Biophysical journal,
B Rydqvist, and C Swerup, and J Lännergren
November 1985, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!