Different pattern of alkaline phosphatase, osteopontin, and osteocalcin expression in developing rat bone visualized by in situ hybridization. 1990

M Weinreb, and D Shinar, and G A Rodan
Department of Bone Biology and Osteoporosis, Merck Sharp & Dohme Research Laboratories, West Point, PA.

Alkaline phosphatase (AP), osteopontin (OP), and osteocalcin (OC) are expressed during osteoblastic differentiation. However, previous studies suggested differences in the timing and possibly the site of their expression. In this study we used in situ hybridization to follow the distribution of these osteoblastic markers during bone development. Frozen sections of neonatal rat long bones and calvariae were hybridized with 35S-labeled RNA probes complementary to the AP, OP, and OC mRNAs. Controls included sections hybridized with the sense (mRNA) probes or pretreated with RNase. Positive cells were identified in all areas of bone formation of the long bones and calvariae. Based on quantitative silver grain distribution and density, high levels of OP expression were present only in osteoblasts in close proximity to bone (one to two cell layers). OC expression, apparently at lower levels than OP, was also localized to osteoblasts in contact with bone. In contrast AP, which was expressed at lower levels than OP, was present in a large number of cells, including preosteoblasts that were many layers removed from the bone-forming surface. These findings are consistent with the asynchronous expression of phenotypically related genes and suggest that AP is an earlier differentiation marker than OP and OC during the formation of endochondral and membranous bone.

UI MeSH Term Description Entries
D008682 Metatarsal Bones The five long bones of the METATARSUS, articulating with the TARSAL BONES proximally and the PHALANGES OF TOES distally. Metatarsals,Bone, Metatarsal,Bones, Metatarsal,Metatarsal,Metatarsal Bone
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010750 Phosphoproteins Phosphoprotein
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001846 Bone Development The growth and development of bones from fetus to adult. It includes two principal mechanisms of bone growth: growth in length of long bones at the epiphyseal cartilages and growth in thickness by depositing new bone (OSTEOGENESIS) with the actions of OSTEOBLASTS and OSTEOCLASTS. Bone Growth
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012795 Sialoglycoproteins Glycoproteins which contain sialic acid as one of their carbohydrates. They are often found on or in the cell or tissue membranes and participate in a variety of biological activities. Polysialoglycoprotein,Sialoglycopeptide,Sialoglycopeptides,Sialoglycoprotein,Sialoprotein,Sialoproteins,Polysialoglycoproteins
D012834 Silver An element with the atomic symbol Ag, atomic number 47, and atomic weight 107.87. It is a soft metal that is used medically in surgical instruments, dental prostheses, and alloys. Long-continued use of silver salts can lead to a form of poisoning known as ARGYRIA.

Related Publications

M Weinreb, and D Shinar, and G A Rodan
March 1993, Kokubyo Gakkai zasshi. The Journal of the Stomatological Society, Japan,
M Weinreb, and D Shinar, and G A Rodan
February 1992, Calcified tissue international,
M Weinreb, and D Shinar, and G A Rodan
August 1995, Journal of Korean medical science,
M Weinreb, and D Shinar, and G A Rodan
July 1994, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
M Weinreb, and D Shinar, and G A Rodan
November 2015, Veterinary journal (London, England : 1997),
M Weinreb, and D Shinar, and G A Rodan
September 1978, Scandinavian journal of dental research,
M Weinreb, and D Shinar, and G A Rodan
January 2006, Nigerian journal of physiological sciences : official publication of the Physiological Society of Nigeria,
Copied contents to your clipboard!