Long acting cAMP analogues enhance sulfate incorporation into matrix proteoglycans and suppress cell division of fetal rat chondrocytes in monolayer culture. 1979

R P Miller, and M Husain, and S Lohin

The relationship between replication and the synthesis of matrix sulfated proteoglycans was investigated with fetal rat chondrocytes grown in monolayer culture. The effect of N6 O2' dibutyryl adenosine 3', 5' cyclic monophosphate (DBcAMP), adenosine 3', 5' cyclic monophosphate (cAMP), 8 Bromo adenosine 3', 5' cyclic monophosphate (8 Br-cAMP), sodium butyrate and hydroxyurea was examined. Between 0.05 and 0.5 mM DBcAMP, a dose related inhibition of cell division and stimulation of [35SO=/4] incorporation into matrix proteoglycans was demonstrated. At the higher concentrations of DBcAMP, cell division was completely inhibited and the enhancement of [35SO=/4] incorporation into matrix proteoglycans ranged between 40 and 120% (P less than 0.01). Utilizing 14C-glucosamine and photometric determination of proteoglycans with Alcian Blue, it was demonstrated that the increase in sulfate incorporation reflected enhanced accumulation of extracellular matrix. The effects of DBcAMP were mimicked by 8 Br-cAMP, suggesting they were mediated by the adenylyl cyclase system. cAMP (0.05-0.5 mM), sodium butyrate (0.1-0.5 mM) and hydroxyurea (0.5-5 mM) partially or fully inhibited cell division, but either failed or only slightly enhanced sulfate incorporation. The enhanced sulfated proteoglycan deposition promoted by DBcAMP began 8 to 12 hours after serum stimulation, its onset occurred prior to thymidine incorporation and the effect persisted for 28 hours. Determination of cell volume demonstrated an increase in size of DBcAMP treated chondrocytes between 8 to 12 hours, coincident with the onset of increased sulfate incorporation. These results are consistent with a model where matrix sulfated proteoglycan deposition by chondrocytes is mediated by intracellular cAMP levels and occurs in the G1 phase of the cell cycle.

UI MeSH Term Description Entries
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002356 Cartilage A non-vascular form of connective tissue composed of CHONDROCYTES embedded in a matrix that includes CHONDROITIN SULFATE and various types of FIBRILLAR COLLAGEN. There are three major types: HYALINE CARTILAGE; FIBROCARTILAGE; and ELASTIC CARTILAGE. Cartilages
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013431 Sulfates Inorganic salts of sulfuric acid. Sulfate,Sulfates, Inorganic,Inorganic Sulfates
D013936 Thymidine A nucleoside in which THYMINE is linked to DEOXYRIBOSE. 2'-Deoxythymidine,Deoxythymidine,2' Deoxythymidine
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

R P Miller, and M Husain, and S Lohin
January 1970, Arthritis and rheumatism,
R P Miller, and M Husain, and S Lohin
January 1971, Arthritis and rheumatism,
R P Miller, and M Husain, and S Lohin
July 1981, The Journal of cell biology,
R P Miller, and M Husain, and S Lohin
January 1978, Connective tissue research,
R P Miller, and M Husain, and S Lohin
August 1984, Biochimica et biophysica acta,
R P Miller, and M Husain, and S Lohin
February 1994, European journal of biochemistry,
Copied contents to your clipboard!