Diet-induced obesity severely impairs myelinated aortic baroreceptor reflex responses. 2012

Belinda H McCully, and Virginia L Brooks, and Michael C Andresen
Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA. houghtob@ohsu.edu

Diet-induced obesity (DIO) attenuates the arterial cardiac baroreceptor reflex, but the mechanisms and sites of action are unknown. This study tested the hypothesis that DIO impairs central aortic baroreceptor pathways. Normal chow control (CON) and high-fat-chow obesity-resistant (OR) and obesity-prone (OP) rats were anesthetized (inactin, 120 mg/kg) and underwent sinoaortic denervation. The central end of the aortic depressor nerve (ADN) was electrically stimulated to generate frequency-dependent baroreflex curves (5-100 Hz) during selective activation of myelinated (A-fiber) or combined (A- and C-fiber) ADN baroreceptors. A mild stimulus (1 V) that activates only A-fiber ADN baroreceptors induced robust, frequency-dependent depressor and bradycardic responses in CON and OR rats, but these responses were completely abolished in OP rats. Maximal activation of A fibers (3 V) elicited frequency-dependent reflexes in all groups, but a dramatic deficit was still present in OP rats. Activation of all ADN baroreceptors (20 V) evoked even larger reflex responses. Depressor responses were nearly identical among groups, but OP rats still exhibited attenuated bradycardia. In separate groups of rats, the reduced heart rate (HR) response to maximal activation of ADN A fibers (3 V) persisted in OP rats following pharmacological blockade of β(1)-adrenergic or muscarinic receptors, suggesting deficits in both parasympathetic nervous system (PNS) and sympathetic nervous system (SNS) reflex pathways. However, the bradycardic responses to direct efferent vagal stimulation were similar among groups. Taken together, our data suggest that DIO severely impairs the central processing of myelinated aortic baroreceptor control of HR, including both PNS and SNS components.

UI MeSH Term Description Entries
D008297 Male Males
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001011 Aorta The main trunk of the systemic arteries. Aortas
D013564 Sympathetic Nervous System The thoracolumbar division of the autonomic nervous system. Sympathetic preganglionic fibers originate in neurons of the intermediolateral column of the spinal cord and project to the paravertebral and prevertebral ganglia, which in turn project to target organs. The sympathetic nervous system mediates the body's response to stressful situations, i.e., the fight or flight reactions. It often acts reciprocally to the parasympathetic system. Nervous System, Sympathetic,Nervous Systems, Sympathetic,Sympathetic Nervous Systems,System, Sympathetic Nervous,Systems, Sympathetic Nervous
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Belinda H McCully, and Virginia L Brooks, and Michael C Andresen
August 1992, Journal of applied physiology (Bethesda, Md. : 1985),
Belinda H McCully, and Virginia L Brooks, and Michael C Andresen
January 1976, Acta medica Scandinavica. Supplementum,
Belinda H McCully, and Virginia L Brooks, and Michael C Andresen
April 1990, Hypertension (Dallas, Tex. : 1979),
Belinda H McCully, and Virginia L Brooks, and Michael C Andresen
September 1977, British medical journal,
Belinda H McCully, and Virginia L Brooks, and Michael C Andresen
January 1990, Journal of cardiovascular pharmacology,
Belinda H McCully, and Virginia L Brooks, and Michael C Andresen
March 2017, Scientific reports,
Belinda H McCully, and Virginia L Brooks, and Michael C Andresen
July 1992, The American journal of physiology,
Belinda H McCully, and Virginia L Brooks, and Michael C Andresen
July 1989, Obstetrics and gynecology,
Belinda H McCully, and Virginia L Brooks, and Michael C Andresen
August 2002, American journal of physiology. Regulatory, integrative and comparative physiology,
Belinda H McCully, and Virginia L Brooks, and Michael C Andresen
March 2018, The Journal of clinical investigation,
Copied contents to your clipboard!