Capsid protein precursor is one of two initiated products of translation of poliovirus RNA in vitro. 1979

S Humphries, and F Knauert, and E Ehrenfeld

Previous studies in our laboratory have demonstrated that cell-free systems translating the Mahoney strain of poliovirus type I RNA utilize two unique initiation sites. In this study, defective-interfering particles of poliovirus, which contain deletions in the region encoding the capsid proteins, are shown to initiate translation of proteins in vitro at these same two sites. Both the standard virus and the defective-interfering virus RNA direct the synthesis of two polypeptides labeled with n-formyl-methionine (fmet) at their amino termini. The size of the smaller fmet polypeptide synthesized in vitro by the defective virus appears identical in size to that of the standard virus. However, the larger-molecular-weight fmet polypeptide is reduced in size from 115,000 to 69,000 daltons. This correlates exactly with the reduced size of the precursor to the capsid proteins synthesized by the defective virus in vivo and with the size of the deletion in the defective virus RNA (1,200 bases). This provides genetic evidence that the 115,000-dalton fmet polypeptide synthesized into vitro by the standard virus is NCVP1a, the precursor to the coat proteins. Although the identity of the small (5,000 to 10,000 daltons) fmet polypeptide is not clear, several lines of evidence enable us to exclude the possibility that it is VP4, the smallest viral capsid protein.

UI MeSH Term Description Entries
D010442 Peptide Chain Initiation, Translational A process of GENETIC TRANSLATION whereby the formation of a peptide chain is started. It includes assembly of the RIBOSOME components, the MESSENGER RNA coding for the polypeptide to be made, INITIATOR TRNA, and PEPTIDE INITIATION FACTORS; and placement of the first amino acid in the peptide chain. The details and components of this process are unique for prokaryotic protein biosynthesis and eukaryotic protein biosynthesis. Chain Initiation, Peptide, Translational,Protein Biosynthesis Initiation,Protein Chain Initiation, Translational,Protein Translation Initiation,Translation Initiation, Genetic,Translation Initiation, Protein,Translational Initiation, Protein,Translational Peptide Chain Initiation,Biosynthesis Initiation, Protein,Genetic Translation Initiation,Initiation, Genetic Translation,Initiation, Protein Biosynthesis,Initiation, Protein Translation,Initiation, Protein Translational,Protein Translational Initiation
D011498 Protein Precursors Precursors, Protein
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D003673 Defective Viruses Viruses which lack a complete genome so that they cannot completely replicate or cannot form a protein coat. Some are host-dependent defectives, meaning they can replicate only in cell systems which provide the particular genetic function which they lack. Others, called SATELLITE VIRUSES, are able to replicate only when their genetic defect is complemented by a helper virus. Incomplete Viruses,Defective Hybrids,Defective Hybrid,Defective Virus,Hybrid, Defective,Hybrids, Defective,Incomplete Virus,Virus, Defective,Virus, Incomplete,Viruses, Defective,Viruses, Incomplete
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D017955 Poliovirus A species of ENTEROVIRUS which is the causal agent of POLIOMYELITIS in humans. Three serotypes (strains) exist. Transmission is by the fecal-oral route, pharyngeal secretions, or mechanical vector (flies). Vaccines with both inactivated and live attenuated virus have proven effective in immunizing against the infection. Brunhilde Virus,Human poliovirus 1,Human poliovirus 2,Human poliovirus 3,Lansing Virus,Leon Virus,Poliovirus Type 1,Poliovirus Type 2,Poliovirus Type 3,Polioviruses

Related Publications

S Humphries, and F Knauert, and E Ehrenfeld
November 1975, Journal of molecular biology,
S Humphries, and F Knauert, and E Ehrenfeld
September 1988, Virology,
S Humphries, and F Knauert, and E Ehrenfeld
November 1987, Proceedings of the National Academy of Sciences of the United States of America,
S Humphries, and F Knauert, and E Ehrenfeld
September 1981, FEBS letters,
S Humphries, and F Knauert, and E Ehrenfeld
June 1964, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!