Evolutionary relationships of the primate papovaviruses: base sequence homology among the genomes of simian virus 40, stump-tailed macaque virus, and SA12 virus. 1979

N Newell, and K V Shah, and T J Kelly

Physical maps of the genomes of the two newly discovered primate papovaviruses, SA12 and stump-tailed macaque virus (STMV), were generated by restriction endonuclease analysis. The base sequence homologies among the genomes of SA12, stump-tailed macaque virus, and simian virus 40 (SV40) were studied by heteroduplex analysis. Heteroduplexes between SA12 and SV40 DNAs and stump-tailed macaque virus and SV40 DNAs were constructed and mounted for electron microscopy in various amounts of formamide to achieve a range of effective temperatures. At each effective temperature, the regions of duplex DNA in the heteroduplexes were measured and localized on the SV40 physical and functional maps. By analyzing the data from this study and rom our previous study (N. Newell, C. J. Lai, G. Khoury, and T. J. Kelly Jr., J. Virol. 25:193-201, 1978) on the base sequence homology between the genomes of BK virus and SV40, some general conclusions have been drawn concerning the evolutionary relationships among the genomes of the primate papovaviruses. The extent of homology among the viral genomes does not reflect the phylogenetic relationships of their hosts. At comparable effective temperatures Tm - 33 degrees C), the heteroduplexes between the DNAs of BK virus and SV40 contained the largest amount of duplex (about 90%). The heteroduplexes made between SA12 and SV40 DNAs were slightly less homologous, containing about 80% duplex. The heteroduplexes made between SV40 and stump-tailed macaque virus DNAs were only 20% duplex under the same conditions. When the various heteroduplexes were mounted for microscopy at effective temperatures greater than Tm - 33 degrees C, the fraction of the duplex DNA decreased in each case, indicating the existence of considerable base mismatching in the homologous regions. When specific coding or noncoding regions of the viral genomes were compared, the data indicated that the extent of sequence divergence differed markedly from one region to another. In all the heteroduplexes studied, there were two regions, located near the junctions between early and late regions on the SV40 map, which were essentially nonhomologous. All of the heteroduplexes studied showed significantly greater homology in the late region than in early region. Within the late region, the sequences coding for the major capsid polypeptide, VP1, were the most highly conserved.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013539 Simian virus 40 A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures. SV40 Virus,Vacuolating Agent,Polyomavirus macacae,SV 40 Virus,SV 40 Viruses,SV40 Viruses,Vacuolating Agents
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D027382 Polyomaviridae A family of small, non-enveloped DNA viruses, infecting mainly MAMMALS. Alphapolyomavirus,Betapolyomavirus,Deltapolyomavirus,Gammapolyomavirus,Alphapolyomaviruses,Betapolyomaviruses,Deltapolyomaviruses,Gammapolyomaviruses
D027383 Papillomaviridae A family of small, non-enveloped DNA viruses infecting birds and most mammals, especially humans. They are grouped into multiple genera, but the viruses are highly host-species specific and tissue-restricted. They are commonly divided into hundreds of papillomavirus "types", each with specific gene function and gene control regions, despite sequence homology. Human papillomaviruses are found in the genera ALPHAPAPILLOMAVIRUS; BETAPAPILLOMAVIRUS; GAMMAPAPILLOMAVIRUS; and MUPAPILLOMAVIRUS.

Related Publications

N Newell, and K V Shah, and T J Kelly
July 1975, Proceedings of the National Academy of Sciences of the United States of America,
N Newell, and K V Shah, and T J Kelly
January 1963, Science (New York, N.Y.),
N Newell, and K V Shah, and T J Kelly
August 1976, Journal of virology,
N Newell, and K V Shah, and T J Kelly
January 1978, Journal of virology,
N Newell, and K V Shah, and T J Kelly
December 1991, Journal of virology,
N Newell, and K V Shah, and T J Kelly
November 1977, Infection and immunity,
N Newell, and K V Shah, and T J Kelly
March 1979, Proceedings of the National Academy of Sciences of the United States of America,
N Newell, and K V Shah, and T J Kelly
January 1977, Journal of virology,
N Newell, and K V Shah, and T J Kelly
October 1979, The Journal of general virology,
Copied contents to your clipboard!