Intracellular Na+ kinetically interferes with the rotation of the Na(+)-driven flagellar motors of Vibrio alginolyticus. 1990

S Yoshida, and S Sugiyama, and Y Hojo, and H Tokuda, and Y Imae
Department of Molecular Biology, Faculty of Science, Nagoya University, Japan.

To understand the mechanism of Na+ movement through the force-generating units of the Na(+)-driven flagellar motors of Vibrio alginolyticus, the effect of intracellular Na+ concentration on motor rotation was investigated. Control cells containing about 50 mM Na+ showed good motility even at 10 mM Na+ in the medium, i.e. in the absence of an inwardly directed Na+ gradient. In contrast, Na(+)-loaded cells containing about 400 mM Na+ showed very poor motility at 500 mM Na+ in the medium, i.e. even in the presence of an inwardly directed Na+ gradient. The membrane potential of the cells, which is a major driving force for the motor under these conditions, was not detectably altered, and consistently with this, Na(+)-coupled sucrose transport was only partly reduced in the Na(+)-loaded cells. Motility of the Na(+)-loaded cells was restored by decreasing the intracellular Na+ concentration, and the rate of restoration of motility correlated with the rate of the Na+ decrease. These results indicate that the absolute concentration of the intracellular Na+ is a determinant of the rotation rate of the Na(+)-driven flagellar motors of V. alginolyticus. A simple explanation for this phenomenon is that the force-generating unit of the motor has an intracellular Na(+)-binding site, at which the intracellular Na+ kinetically interferes with the rate of Na+ influx for motor rotation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D002794 Choline A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Bursine,Fagine,Vidine,2-Hydroxy-N,N,N-trimethylethanaminium,Choline Bitartrate,Choline Chloride,Choline Citrate,Choline Hydroxide,Choline O-Sulfate,Bitartrate, Choline,Chloride, Choline,Choline O Sulfate,Citrate, Choline,Hydroxide, Choline,O-Sulfate, Choline
D005407 Flagella A whiplike motility appendage present on the surface cells. Prokaryote flagella are composed of a protein called FLAGELLIN. Bacteria can have a single flagellum, a tuft at one pole, or multiple flagella covering the entire surface. In eukaryotes, flagella are threadlike protoplasmic extensions used to propel flagellates and sperm. Flagella have the same basic structure as CILIA but are longer in proportion to the cell bearing them and present in much smaller numbers. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Flagellum
D000621 Aminoisobutyric Acids A group of compounds that are derivatives of the amino acid 2-amino-2-methylpropanoic acid. Acids, Aminoisobutyric
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

S Yoshida, and S Sugiyama, and Y Hojo, and H Tokuda, and Y Imae
December 1992, FEBS letters,
S Yoshida, and S Sugiyama, and Y Hojo, and H Tokuda, and Y Imae
April 2003, Journal of molecular biology,
S Yoshida, and S Sugiyama, and Y Hojo, and H Tokuda, and Y Imae
December 1989, Journal of bioenergetics and biomembranes,
S Yoshida, and S Sugiyama, and Y Hojo, and H Tokuda, and Y Imae
February 2000, The Journal of biological chemistry,
S Yoshida, and S Sugiyama, and Y Hojo, and H Tokuda, and Y Imae
August 1995, Journal of molecular biology,
S Yoshida, and S Sugiyama, and Y Hojo, and H Tokuda, and Y Imae
August 1999, Journal of bacteriology,
S Yoshida, and S Sugiyama, and Y Hojo, and H Tokuda, and Y Imae
January 2010, Journal of bacteriology,
S Yoshida, and S Sugiyama, and Y Hojo, and H Tokuda, and Y Imae
May 2001, Biochimica et biophysica acta,
S Yoshida, and S Sugiyama, and Y Hojo, and H Tokuda, and Y Imae
June 2000, The Journal of biological chemistry,
S Yoshida, and S Sugiyama, and Y Hojo, and H Tokuda, and Y Imae
August 2011, Journal of bacteriology,
Copied contents to your clipboard!