Monoclonal antibody protection from age-dependent poliomyelitis: implications regarding the pathogenesis of lactate dehydrogenase-elevating virus. 1990

J T Harty, and P G Plagemann
Department of Microbiology, University of Minnesota Medical School, Minneapolis 55455-0312.

Over 90% of cyclophosphamide-treated, 6- to 7-month-old C58/M mice developed fatal paralytic disease after infection with a virulent strain of lactate dehydrogenase-elevating virus (LDV), with a mean onset of paralysis of about 16 days. Passive immunization with polyclonal antibodies or with a group of anti-LDV monoclonal antibodies (MAbs) with single-epitope specificity 1 day before or at the time of LDV infection prevented the development of paralytic disease without interfering with the replication of LDV in permissive macrophages, the primary host cells of LDV. In situ hybridization of spinal cord sections with an LDV-specific cDNA probe indicated that the MAb specifically prevented the cytocidal infection of motor neurons by LDV without blocking the infection of smaller nonneuronal cells in the spinal cord. The protective antibodies recognize at least two different epitopes on the glycoprotein of LDV, VP-3. Passive immunizations with other anti-LDV MAbs, which recognize at least three other epitopes on VP-3 of LDV, afforded no protection. In contrast to the protective effect of anti-LDV MAb injection before or at the time of LDV infection, their administration postinfection exerted relatively little protection, though it delayed the appearance of paralytic symptoms. However, repeated injections of MAbs until at least 7 days postinfection also afforded a high degree of protection. The results indicate that protective MAbs may interfere with two stages in the development of LDV-induced paralytic disease. When administered at the time of LDV infection, they prevent the initial infection of spinal cord motor neurons. After this initial event, repeated injections of MAb are required to inhibit the spread of LDV between neurons until the endogenous production of protective anti-LDV antibodies in these mice.

UI MeSH Term Description Entries
D007772 Lactate dehydrogenase-elevating virus A species ARTERIVIRUS, occurring in a number of transplantable mouse tumors. Infected mice have permanently elevated serum levels of lactate dehydrogenase. Riley Virus,Lactate Dehydrogenase Virus,Lactic Dehydrogenase Virus,Lactate Dehydrogenase Viruses,Lactate dehydrogenase elevating virus,Lactate dehydrogenase-elevating viruses,Lactic Dehydrogenase Viruses
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D011051 Poliomyelitis An acute infectious disease of humans, particularly children, caused by any of three serotypes of human poliovirus (POLIOVIRUS). Usually the infection is limited to the gastrointestinal tract and nasopharynx, and is often asymptomatic. The central nervous system, primarily the spinal cord, may be affected, leading to rapidly progressive paralysis, coarse FASCICULATION and hyporeflexia. Motor neurons are primarily affected. Encephalitis may also occur. The virus replicates in the nervous system, and may cause significant neuronal loss, most notably in the spinal cord. A rare related condition, nonpoliovirus poliomyelitis, may result from infections with nonpoliovirus enteroviruses. (From Adams et al., Principles of Neurology, 6th ed, pp764-5) Infantile Paralysis,Polio,Poliomyelitis, Nonpoliovirus,Poliomyelitis, Preparalytic,Encephalitis, Polio,Epidemic Acute Poliomyelitis,Polio Encephalitis,Poliomyelitis Infection,Poliomyelitis, Acute,Acute Poliomyelitis,Acute Poliomyelitis, Epidemic,Infection, Poliomyelitis,Infections, Poliomyelitis,Nonpoliovirus Poliomyelitis,Paralysis, Infantile,Poliomyelitides, Preparalytic,Poliomyelitis Infections,Poliomyelitis, Epidemic Acute,Polios,Preparalytic Poliomyelitis
D003520 Cyclophosphamide Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer. (+,-)-2-(bis(2-Chloroethyl)amino)tetrahydro-2H-1,3,2-oxazaphosphorine 2-Oxide Monohydrate,B-518,Cyclophosphamide Anhydrous,Cyclophosphamide Monohydrate,Cyclophosphamide, (R)-Isomer,Cyclophosphamide, (S)-Isomer,Cyclophosphane,Cytophosphan,Cytophosphane,Cytoxan,Endoxan,NSC-26271,Neosar,Procytox,Sendoxan,B 518,B518,NSC 26271,NSC26271
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA

Related Publications

J T Harty, and P G Plagemann
January 1989, Critical reviews in microbiology,
J T Harty, and P G Plagemann
April 1975, Journal of comparative pathology,
J T Harty, and P G Plagemann
June 1986, The Journal of general virology,
J T Harty, and P G Plagemann
November 1985, The Journal of general virology,
J T Harty, and P G Plagemann
August 1988, The Journal of general virology,
J T Harty, and P G Plagemann
November 2012, Journal of virology,
J T Harty, and P G Plagemann
January 2006, Advances in experimental medicine and biology,
J T Harty, and P G Plagemann
August 1994, Journal of clinical microbiology,
Copied contents to your clipboard!