Targeted entry of enveloped viruses: measles and herpes simplex virus I. 2012

Chanakha K Navaratnarajah, and Tanner S Miest, and Andrea Carfi, and Roberto Cattaneo
Department of Molecular Medicine, Virology and Gene Therapy Track, Mayo Graduate School, Rochester, MN 55905, USA.

We compare the receptor-based mechanisms that a small RNA virus and a larger DNA virus have evolved to drive the fusion of viral and cellular membranes. Both systems rely on tight control over triggering the concerted refolding of a trimeric fusion protein. While measles virus entry depends on a receptor-binding protein and a fusion protein only, the herpes simplex virus (HSV) is more complex and requires four viral proteins. Nevertheless, in both viruses a receptor-binding protein is required for triggering the membrane fusion process. Moreover, specificity domains can be appended to these receptor-binding proteins to target virus entry to cells expressing a designated receptor. We discuss how principles established with measles and HSV can be applied to targeting other enveloped viruses, and alternatively how retargeted envelopes can be fitted on foreign capsids.

UI MeSH Term Description Entries
D008457 Measles A highly contagious infectious disease caused by MORBILLIVIRUS, common among children but also seen in the nonimmune of any age, in which the virus enters the respiratory tract via droplet nuclei and multiplies in the epithelial cells, spreading throughout the MONONUCLEAR PHAGOCYTE SYSTEM. Rubeola
D008459 Measles virus The type species of MORBILLIVIRUS and the cause of the highly infectious human disease MEASLES, which affects mostly children. Edmonston virus
D011991 Receptors, Virus Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response. Viral Entry Receptor,Viral Entry Receptors,Virus Attachment Factor,Virus Attachment Factors,Virus Attachment Receptor,Virus Attachment Receptors,Virus Entry Receptor,Virus Entry Receptors,Virus Receptor,Virus Receptors,Attachment Factor, Virus,Attachment Factors, Virus,Attachment Receptor, Virus,Attachment Receptors, Virus,Entry Receptor, Viral,Entry Receptor, Virus,Entry Receptors, Viral,Entry Receptors, Virus,Receptor, Viral Entry,Receptor, Virus,Receptor, Virus Attachment,Receptor, Virus Entry,Receptors, Viral Entry,Receptors, Virus Attachment,Receptors, Virus Entry
D006561 Herpes Simplex A group of acute infections caused by herpes simplex virus type 1 or type 2 that is characterized by the development of one or more small fluid-filled vesicles with a raised erythematous base on the skin or mucous membrane. It occurs as a primary infection or recurs due to a reactivation of a latent infection. (Dorland, 27th ed.) Herpes Simplex Virus Infection
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014759 Viral Envelope Proteins Integral membrane proteins that are incorporated into the VIRAL ENVELOPE. They are glycosylated during VIRAL ASSEMBLY. Envelope Proteins, Viral,Viral Envelope Glycoproteins,Viral Envelope Protein,Virus Envelope Protein,Virus Peplomer Proteins,Bovine Leukemia Virus Glycoprotein gp51,Hepatitis Virus (MHV) Glycoprotein E2,LaCrosse Virus Envelope Glycoprotein G1,Simian Sarcoma Virus Glycoprotein 70,Viral Envelope Glycoprotein gPr90 (Murine Leukemia Virus),Viral Envelope Glycoprotein gp55 (Friend Virus),Viral Envelope Proteins E1,Viral Envelope Proteins E2,Viral Envelope Proteins gp52,Viral Envelope Proteins gp70,Virus Envelope Proteins,Envelope Glycoproteins, Viral,Envelope Protein, Viral,Envelope Protein, Virus,Envelope Proteins, Virus,Glycoproteins, Viral Envelope,Peplomer Proteins, Virus,Protein, Viral Envelope,Protein, Virus Envelope,Proteins, Viral Envelope,Proteins, Virus Envelope,Proteins, Virus Peplomer
D053586 Virus Internalization The entering of cells by viruses following VIRUS ATTACHMENT. This is achieved by ENDOCYTOSIS, by translocation of the whole virus across the cell membrane, by direct MEMBRANE FUSION of the viral membrane with the CELL MEMBRANE, or by fusion of the membrane of infected cells with the membrane of non-infected cells causing SYNCYTIA to be formed. Viral Entry,Viral Internalization,Viral Membrane Fusion,Virus Entry,Virus Membrane Fusion,Entry, Viral,Entry, Virus,Fusion, Viral Membrane,Internalization, Viral,Internalization, Virus,Membrane Fusion, Viral
D018259 Herpesvirus 1, Human The type species of SIMPLEXVIRUS causing most forms of non-genital herpes simplex in humans. Primary infection occurs mainly in infants and young children and then the virus becomes latent in the dorsal root ganglion. It then is periodically reactivated throughout life causing mostly benign conditions. HSV-1,Herpes Simplex Virus 1,HHV-1,Herpes Simplex Virus Type 1,Herpesvirus 1 (alpha), Human,Human Herpesvirus 1

Related Publications

Chanakha K Navaratnarajah, and Tanner S Miest, and Andrea Carfi, and Roberto Cattaneo
May 1968, Journal of virology,
Chanakha K Navaratnarajah, and Tanner S Miest, and Andrea Carfi, and Roberto Cattaneo
January 2020, Methods in molecular biology (Clifton, N.J.),
Chanakha K Navaratnarajah, and Tanner S Miest, and Andrea Carfi, and Roberto Cattaneo
July 1969, The Journal of general virology,
Chanakha K Navaratnarajah, and Tanner S Miest, and Andrea Carfi, and Roberto Cattaneo
September 1949, Revista brasileira de medicina,
Chanakha K Navaratnarajah, and Tanner S Miest, and Andrea Carfi, and Roberto Cattaneo
November 1971, Acta virologica,
Chanakha K Navaratnarajah, and Tanner S Miest, and Andrea Carfi, and Roberto Cattaneo
January 2011, Advances in genetics,
Chanakha K Navaratnarajah, and Tanner S Miest, and Andrea Carfi, and Roberto Cattaneo
August 2011, Current opinion in virology,
Chanakha K Navaratnarajah, and Tanner S Miest, and Andrea Carfi, and Roberto Cattaneo
September 1994, The Biochemical journal,
Chanakha K Navaratnarajah, and Tanner S Miest, and Andrea Carfi, and Roberto Cattaneo
April 1970, Journal of virology,
Chanakha K Navaratnarajah, and Tanner S Miest, and Andrea Carfi, and Roberto Cattaneo
June 1983, The Journal of general virology,
Copied contents to your clipboard!