Ultrastructural study of the cat hypertrophic inferior olive following anterograde tracing, immunocytochemistry, and intracellular labeling. 1990

C I de Zeeuw, and T J Ruigrok, and M P Schalekamp, and A J Boesten, and J Voogd
Dept. of Anatomy, Erasmus University Rotterdam, The Netherlands.

Contralateral cerebellectomy can induce hypertrophy of olivary neurons in cat. In the present study we examined the ultrastructure of the cat hypertrophic inferior olive following GABA-, dopamine- and serotonin-immunocytochemistry, anterograde tracing from the mesodiencephalic junction, and intracellular labeling with HRP. Compared to normal olivary neurons the hypertrophic cells showed larger cell bodies, more and longer somatic spines which were linked by gap junctions, and longer distal dendrites with relatively few spines. The hypertrophic olivary neurons received less GABAergic boutons on their dendrites but an equal percentage was apposed to their somata as compared to normal cells. Relatively many mesodiencephalic terminals, a similar serotoninergic, and a slightly increased dopaminergic input were found. The axon of one intracellularly labeled hypertrophic cell gave off recurrent collaterals bearing varicosities filled with vesicles. These results indicated that 1) hypertrophic olivary cells are affected by trophic factors not only at the cell body but also at the level of the somatic spines, dendrites, and axon, 2) the ratio of excitatory to inhibitory terminals is increased in the hypertrophic neuropil, whereas the monoaminergic input remains stationary, and 3) the electronic coupling between hypertrophic olivary neurons has shifted from a dendritic to a more somatic location due to a relatively high number of gap junctions between the somatic spines.

UI MeSH Term Description Entries
D006984 Hypertrophy General increase in bulk of a part or organ due to CELL ENLARGEMENT and accumulation of FLUIDS AND SECRETIONS, not due to tumor formation, nor to an increase in the number of cells (HYPERPLASIA). Hypertrophies
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009847 Olivary Nucleus A brainstem nuclear complex. in the hindbrain, also referred to as the olivary body. The olivary nuclear complex is a part of the MEDULLA OBLONGATA and the PONTINE TEGMENTUM. It is involved with motor control and is a major source of sensory input to the CEREBELLUM. Basal Nucleus, Olivary,Nucleus Basalis, Olivary,Olivary Body,Olivary Complex,Olivary Nuclei,Complex, Olivary,Nucleus, Olivary,Nucleus, Olivary Basal,Olivary Basal Nucleus,Olivary Bodies
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004027 Diencephalon The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived. Interbrain,Interbrains
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

C I de Zeeuw, and T J Ruigrok, and M P Schalekamp, and A J Boesten, and J Voogd
August 1967, Science (New York, N.Y.),
C I de Zeeuw, and T J Ruigrok, and M P Schalekamp, and A J Boesten, and J Voogd
June 1997, The Journal of comparative neurology,
C I de Zeeuw, and T J Ruigrok, and M P Schalekamp, and A J Boesten, and J Voogd
November 1988, Neuroscience,
C I de Zeeuw, and T J Ruigrok, and M P Schalekamp, and A J Boesten, and J Voogd
May 1997, Experimental brain research,
C I de Zeeuw, and T J Ruigrok, and M P Schalekamp, and A J Boesten, and J Voogd
February 1989, Brain research,
C I de Zeeuw, and T J Ruigrok, and M P Schalekamp, and A J Boesten, and J Voogd
June 2020, Experimental neurobiology,
C I de Zeeuw, and T J Ruigrok, and M P Schalekamp, and A J Boesten, and J Voogd
April 1994, The Journal of comparative neurology,
C I de Zeeuw, and T J Ruigrok, and M P Schalekamp, and A J Boesten, and J Voogd
February 1963, The Journal of comparative neurology,
C I de Zeeuw, and T J Ruigrok, and M P Schalekamp, and A J Boesten, and J Voogd
August 1987, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
C I de Zeeuw, and T J Ruigrok, and M P Schalekamp, and A J Boesten, and J Voogd
September 1991, Brain research,
Copied contents to your clipboard!