Cellular mechanism underlying the facilitation of contractile response of vas deferens smooth muscle by sodium orthovanadate. 2012

Lei Zhao, and Zhe Wang, and Ye-Chun Ruan, and Wen-Liang Zhou
Department of Physiology, Guangzhou Medical University, 195 Dongfeng West Road, Guangzhou 510182, People's Republic of China. crystal-zl@163.com

In the earlier study, sodium orthovanadate (SOV) has been reported to be a powerful inhibitor of (Na(+), K(+)) adenosine triphosphatase, exhibit widespread actions on the renal and cardiovascular systems, induces smooth muscle contraction by inhibiting the phosphorylation of the protein tyrosine phosphatases. In the current study, we aimed to investigate the cellular mechanisms by which SOV facilitated contractile response of vas deferens smooth muscle and its potential therapeutic advantage. Exogenous application of ATP and NA-caused contraction was strengthened by pretreatment with SOV. This facilitation was inhibited not by bath with the inhibitor of P2 receptor, PPADS, or the inhibitor of α1 receptor, Prazosin, but by bath with the protein tyrosine kinase inhibitor, Genistein. SOV induced a sustained increase in intracellular Ca(2+) of smooth muscle cells, which was abolished by 100 μM Genistein or Ca(2+)-free solution. The facilitation of SOV could also be inhibited by the selective inhibitors of TRP channel, 2-APB and non-selective cation channel, Gd(3+), Ni(+). The in vivo study showed that peritoneal injection of SOV in dystrophic mice (mdx mice) enhanced the contraction of vas deferens smooth muscle stimulated by electrical field stimulation, ATP, noradrenaline, or KCl. The above results suggest that SOV facilitates the concentration of vas deferens smooth muscle through the tyrosine phosphorylation activated the non-selective cation channels, which has potential use in the therapy for muscle dysfunction.

UI MeSH Term Description Entries
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011224 Prazosin A selective adrenergic alpha-1 antagonist used in the treatment of HEART FAILURE; HYPERTENSION; PHEOCHROMOCYTOMA; RAYNAUD DISEASE; PROSTATIC HYPERTROPHY; and URINARY RETENTION. Furazosin,Minipress,Pratsiol,Prazosin HCL,Prazosin Hydrochloride,HCL, Prazosin,Hydrochloride, Prazosin
D001896 Boron Compounds Inorganic or organic compounds that contain boron as an integral part of the molecule. Borides,Compounds, Boron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

Lei Zhao, and Zhe Wang, and Ye-Chun Ruan, and Wen-Liang Zhou
January 2005, The Journal of pharmacology and experimental therapeutics,
Lei Zhao, and Zhe Wang, and Ye-Chun Ruan, and Wen-Liang Zhou
July 2022, American journal of physiology. Lung cellular and molecular physiology,
Lei Zhao, and Zhe Wang, and Ye-Chun Ruan, and Wen-Liang Zhou
January 2022, The American journal of pathology,
Lei Zhao, and Zhe Wang, and Ye-Chun Ruan, and Wen-Liang Zhou
February 1987, Pflugers Archiv : European journal of physiology,
Lei Zhao, and Zhe Wang, and Ye-Chun Ruan, and Wen-Liang Zhou
April 1979, European journal of pharmacology,
Lei Zhao, and Zhe Wang, and Ye-Chun Ruan, and Wen-Liang Zhou
October 1987, Japanese journal of pharmacology,
Lei Zhao, and Zhe Wang, and Ye-Chun Ruan, and Wen-Liang Zhou
July 1964, The Journal of physiology,
Lei Zhao, and Zhe Wang, and Ye-Chun Ruan, and Wen-Liang Zhou
April 1985, Nihon Heikatsukin Gakkai zasshi,
Lei Zhao, and Zhe Wang, and Ye-Chun Ruan, and Wen-Liang Zhou
August 1979, Canadian journal of physiology and pharmacology,
Lei Zhao, and Zhe Wang, and Ye-Chun Ruan, and Wen-Liang Zhou
March 1970, The Journal of physiology,
Copied contents to your clipboard!