Cardioprotective effect of total paeony glycosides against isoprenaline-induced myocardial ischemia in rats. 2012

Jiangang Long, and Meili Gao, and Yu Kong, and Xian Shen, and Xiaoyang Du, and Young-Ok Son, and Xianglin Shi, and Jiankang Liu, and Xiaoyan Mo
Department of Biological Science and Engineering, Institute of Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, Xi'an 710049, China.

Paeoniae radix is a traditional Chinese medicinal herb for treating some diseases; important components are total paeony glycosides (TPGs), an approved drug by the State Food and Drug Administration (SFDA) for the therapy of rheumatoid arthritis (RA). We firstly reported myocardial benefits of TPGs previously, and the present study is to further investigate the underlying mechanisms for preventing oxidative damage in cardiomyopathy. We measured the capacity of TPGs to scavenge free radicals in vitro. Then 60 SD rats were randomly divided into five groups: (1) a normal control group, (2) an isoprenaline (ISO)-induced myocardial ischemic model group, (3) a TPG treatment group (TPGs 269.4 mg/kg delivered by intragastric administration for 3 days before ISO administration and TPGs 449 mg/kg delivered for 3 days after ISO administration), (4) a TPG therapy group (TPGs 449 mg/kg delivered for 3 days after ISO administration), and (5) a positive control group (propranolol 15 mg/kg for 3 days after ISO administration). The ISO-induced myocardial ischemic model was established by subcutaneous injection of 1mg/kg/8h ISO (2 times). The activities of myocardial enzymes, including glutamic oxaloacetic transaminase (GOT), creatine kinase (CK), lactate dehydrogenase (LDH), antioxidant enzyme superoxide dismutase (SOD) as well as the content of lipid peroxidation product malondialdehyde (MDA) were detected. We found that TPGs potently eliminated hydroxyl radicals and superoxide in vitro using ESR assays. Compared with model rats, TPG treatment, TPG therapy and the positive control treatment exhibited significantly reduced activities of GOT, LDH, and CK (p < 0.01), increased activity of SOD (p < 0.01) and lower levels of MDA (p < 0.05). More interestingly, the protective effect of TPG treatment was even better than that of propranolol. These results suggest that TPGs significantly ameliorate ISO-induced myocardial ischemia and their action might be through reducing oxidative stress in ischemic myocardium.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008297 Male Males
D010946 Plants, Medicinal Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals. Herbs, Medicinal,Medicinal Herbs,Healing Plants,Medicinal Plants,Pharmaceutical Plants,Healing Plant,Herb, Medicinal,Medicinal Herb,Medicinal Plant,Pharmaceutical Plant,Plant, Healing,Plant, Medicinal,Plant, Pharmaceutical,Plants, Healing,Plants, Pharmaceutical
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D002316 Cardiotonic Agents Agents that have a strengthening effect on the heart or that can increase cardiac output. They may be CARDIAC GLYCOSIDES; SYMPATHOMIMETICS; or other drugs. They are used after MYOCARDIAL INFARCT; CARDIAC SURGICAL PROCEDURES; in SHOCK; or in congestive heart failure (HEART FAILURE). Cardiac Stimulant,Cardiac Stimulants,Cardioprotective Agent,Cardioprotective Agents,Cardiotonic,Cardiotonic Agent,Cardiotonic Drug,Inotropic Agents, Positive Cardiac,Myocardial Stimulant,Myocardial Stimulants,Cardiotonic Drugs,Cardiotonics,Agent, Cardioprotective,Agent, Cardiotonic,Drug, Cardiotonic,Stimulant, Cardiac,Stimulant, Myocardial
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004353 Drug Evaluation, Preclinical Preclinical testing of drugs in experimental animals or in vitro for their biological and toxic effects and potential clinical applications. Drug Screening,Evaluation Studies, Drug, Pre-Clinical,Drug Evaluation Studies, Preclinical,Drug Evaluations, Preclinical,Evaluation Studies, Drug, Preclinical,Evaluation, Preclinical Drug,Evaluations, Preclinical Drug,Medicinal Plants Testing, Preclinical,Preclinical Drug Evaluation,Preclinical Drug Evaluations,Drug Screenings,Screening, Drug,Screenings, Drug
D006027 Glycosides Any compound that contains a constituent sugar, in which the hydroxyl group attached to the first carbon is substituted by an alcoholic, phenolic, or other group. They are named specifically for the sugar contained, such as glucoside (glucose), pentoside (pentose), fructoside (fructose), etc. Upon hydrolysis, a sugar and nonsugar component (aglycone) are formed. (From Dorland, 28th ed; From Miall's Dictionary of Chemistry, 5th ed) Glycoside

Related Publications

Jiangang Long, and Meili Gao, and Yu Kong, and Xian Shen, and Xiaoyang Du, and Young-Ok Son, and Xianglin Shi, and Jiankang Liu, and Xiaoyan Mo
December 2015, Journal of ethnopharmacology,
Jiangang Long, and Meili Gao, and Yu Kong, and Xian Shen, and Xiaoyang Du, and Young-Ok Son, and Xianglin Shi, and Jiankang Liu, and Xiaoyan Mo
January 2023, Frontiers in pharmacology,
Jiangang Long, and Meili Gao, and Yu Kong, and Xian Shen, and Xiaoyang Du, and Young-Ok Son, and Xianglin Shi, and Jiankang Liu, and Xiaoyan Mo
January 2024, Frontiers in pharmacology,
Jiangang Long, and Meili Gao, and Yu Kong, and Xian Shen, and Xiaoyang Du, and Young-Ok Son, and Xianglin Shi, and Jiankang Liu, and Xiaoyan Mo
July 2018, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Jiangang Long, and Meili Gao, and Yu Kong, and Xian Shen, and Xiaoyang Du, and Young-Ok Son, and Xianglin Shi, and Jiankang Liu, and Xiaoyan Mo
January 2006, Journal of medicinal food,
Jiangang Long, and Meili Gao, and Yu Kong, and Xian Shen, and Xiaoyang Du, and Young-Ok Son, and Xianglin Shi, and Jiankang Liu, and Xiaoyan Mo
February 2020, Scientific reports,
Jiangang Long, and Meili Gao, and Yu Kong, and Xian Shen, and Xiaoyang Du, and Young-Ok Son, and Xianglin Shi, and Jiankang Liu, and Xiaoyan Mo
April 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Jiangang Long, and Meili Gao, and Yu Kong, and Xian Shen, and Xiaoyang Du, and Young-Ok Son, and Xianglin Shi, and Jiankang Liu, and Xiaoyan Mo
May 2008, International journal of cardiology,
Jiangang Long, and Meili Gao, and Yu Kong, and Xian Shen, and Xiaoyang Du, and Young-Ok Son, and Xianglin Shi, and Jiankang Liu, and Xiaoyan Mo
January 2011, International journal of molecular sciences,
Jiangang Long, and Meili Gao, and Yu Kong, and Xian Shen, and Xiaoyang Du, and Young-Ok Son, and Xianglin Shi, and Jiankang Liu, and Xiaoyan Mo
June 2021, European review for medical and pharmacological sciences,
Copied contents to your clipboard!