Study of mechanisms of electric field-induced DNA transfection. II. Transfection by low-amplitude, low-frequency alternating electric fields. 1990

T D Xie, and T Y Tsong
Department of Biochemistry, University of Minnesota College of Biological Sciences, St. Paul 55108.

Electroporation for DNA transfection generally uses short intense electric pulses (direct current of kilovolts per centimeter, microseconds to milliseconds), or intense dc shifted radio-frequency oscillating fields. These methods, while remarkably effective, often cause death of certain cell populations. Previously it was shown that a completely reversible, high ionic permeation state of membranes could be induced by a low-frequency alternating electric field (ac) with a strength one-tenth, or less, of the critical breakdown voltage of the cell membrane (Teissie, J., and T. Y. Tsong. 1981. J. Physiol. (Paris). 77:1043-1053). We report the transfection of E. coli (JM105) by plasmid PUC18 DNA, which carries an ampicillin-resistance gene, using low-amplitude, low-frequency ac fields. E. coli transformants confer the ampicillin resistance and the efficiency of the transfection can be conveniently assayed by counting colonies in a selection medium containing ampicillin. For the range of ac fields employed (peak-to-peak amplitude 50-200 V/cm, frequency 0.1 Hz-1 MHz, duration 1-100 s), 100% of the E. coli survived the electric field treatment. Transfection efficiencies varied with field strength and frequency, and as high as 1 x 10(5)/micrograms DNA was obtained with a 200 V/cm square wave, 1 Hz ac field, 30 s exposure time, when the DNA/cell ratio was 50-75. Control samples gave a background transfection of much less than 10/micrograms DNA. With a square wave ac field, the transfection efficiency showed a frequency window: the optimal frequency was 1 Hz with a 200 V/cm field, and was approximately 0.1 Hz with a 50 V/cm field. Transfection efficiency varied with the waveform: square wave > sine wave > triangle wave. If the DNA was added after the ac field was turned off, transfection efficiency was reduced to the background level within 1 min. The field intensity used in this study was low and insufficient to cause electric breakdown of cell membranes. Thus, DNA transfection was not caused by electroporation of the cell membranes. Other possible mechanisms will be considered.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D011815 R Factors A class of plasmids that transfer antibiotic resistance from one bacterium to another by conjugation. R Factor,R Plasmid,R Plasmids,Resistance Factor,Resistance Factors,Factor, R,Factor, Resistance,Factors, R,Factors, Resistance,Plasmid, R,Plasmids, R
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004560 Electricity The physical effects involving the presence of electric charges at rest and in motion.
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D001703 Biophysics The study of PHYSICAL PHENOMENA and PHYSICAL PROCESSES as applied to living things. Mechanobiology
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

T D Xie, and T Y Tsong
August 2000, IEEE transactions on bio-medical engineering,
T D Xie, and T Y Tsong
September 2019, Bioelectromagnetics,
T D Xie, and T Y Tsong
May 1999, Bioelectrochemistry and bioenergetics (Lausanne, Switzerland),
T D Xie, and T Y Tsong
July 2015, Physical review. E, Statistical, nonlinear, and soft matter physics,
T D Xie, and T Y Tsong
July 2008, Biophysical journal,
T D Xie, and T Y Tsong
January 1977, Neurosciences Research Program bulletin,
T D Xie, and T Y Tsong
June 2018, Gan to kagaku ryoho. Cancer & chemotherapy,
Copied contents to your clipboard!