Stereochemical course of the reaction catalyzed by 5'-nucleotide phosphodiesterase from snake venom. 1979

F R Bryant, and S J Benkovic

The hydrolysis reaction of ATP alpha S by snake venom phosphodiesterase is highly specific for the B diastereomer and proceeds with 88% retention of configuration at phosphorus. Since this enzyme also catalyzes the hydrolysis of the S enantimoer of O-p-nitrophenyl phenylphosphonothioate, the absolute configuration at A alpha of ATP alpha S (B) is assigned as the R configuration provided the two substrates are processed identically. A mechanism for the hydrolysis reactions catalzyed by the venom phosphodiesterase involving at least a single covalent phosphoryl-enzyme intermediate is in accord with this result.

UI MeSH Term Description Entries
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D009708 Nucleotidases A class of enzymes that catalyze the conversion of a nucleotide and water to a nucleoside and orthophosphate. EC 3.1.3.-.
D010103 Oxygen Isotopes Stable oxygen atoms that have the same atomic number as the element oxygen, but differ in atomic weight. O-17 and 18 are stable oxygen isotopes. Oxygen Isotope,Isotope, Oxygen,Isotopes, Oxygen
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D003435 Crotalid Venoms Venoms from snakes of the subfamily Crotalinae or pit vipers, found mostly in the Americas. They include the rattlesnake, cottonmouth, fer-de-lance, bushmaster, and American copperhead. Their venoms contain nontoxic proteins, cardio-, hemo-, cyto-, and neurotoxins, and many enzymes, especially phospholipases A. Many of the toxins have been characterized. Bothrops Venom,Crotalidae Venoms,Pit Viper Venoms,Rattlesnake Venoms,Crotactin,Crotalid Venom,Crotalin,Crotaline Snake Venom,Crotalotoxin,Crotamin,Pit Viper Venom,Rattlesnake Venom,Snake Venom, Crotaline,Venom, Bothrops,Venom, Crotalid,Venom, Crotaline Snake,Venom, Pit Viper,Venom, Rattlesnake,Venoms, Crotalid,Venoms, Crotalidae,Venoms, Pit Viper,Venoms, Rattlesnake,Viper Venom, Pit
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

F R Bryant, and S J Benkovic
November 1981, The Biochemical journal,
F R Bryant, and S J Benkovic
November 1967, Biochemical and biophysical research communications,
F R Bryant, and S J Benkovic
October 1988, The Journal of biological chemistry,
F R Bryant, and S J Benkovic
May 1993, European journal of biochemistry,
F R Bryant, and S J Benkovic
November 1984, The Journal of biological chemistry,
F R Bryant, and S J Benkovic
November 1982, Analytical biochemistry,
F R Bryant, and S J Benkovic
November 1957, Nature,
F R Bryant, and S J Benkovic
June 1981, The Journal of biological chemistry,
Copied contents to your clipboard!