Influence of temperature and cholesterol on the rotational diffusion of band 3 in the human erythrocyte membrane. 1979

E A Nigg, and R J Cherry

Band 3 rotation in the human erythrocyte membrane is measured by observing flash-induced dichroism of eosin probes. The decay of the absorption anisotropy is found to be strongly dependent on temperature. The results are analyzed on the assumption that rotation of band 3 only occurs about the membrane normal. It is deduced that both fast and slowly rotating forms of band 3 coexist in the membrane. The equilibrium between these forms is temperature dependent, the slowly rotating species becoming increasingly dominant as the temperature is reduced. Plots of the fractional distribution of the different species against temperature show a marked change of slope at around 37--40 degrees C. The effects are essentially reversible over the range 1--45 degrees C and independent of the presence of the spectrin--actin network. The results could be due to temperature-dependent protein--protein associations mediated either by a protein conformational change or by lipid phase segregation. In further experiments, the cholesterol content of the erythrocyte membrane is varied by incubation with lipid vesicles. No significant changes in the rotational diffusion of band 3 are observed following variation of membrane cholesterol/phospholipid mole ratios over the range 0.34--1.66. This is a surprising result in view of the well-known effects of cholesterol on lipid fluidity.

UI MeSH Term Description Entries
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D004801 Eosine Yellowish-(YS) A versatile red dye used in cosmetics, pharmaceuticals, textiles, etc., and as tissue stain, vital stain, and counterstain with HEMATOXYLIN. It is also used in special culture media. Eosin,Eosine Yellowish,Tetrabromofluorescein,Acid Red 87,C.I. Acid Red 87,Eosin (yellowish) (free acid),Eosin Y,Eosine,Eosine Yellowish-(YS), Dipotassium Salt,Eosine Yellowish-(YS), Potassium, Sodium Salt
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D013049 Spectrin A high molecular weight (220-250 kDa) water-soluble protein which can be extracted from erythrocyte ghosts in low ionic strength buffers. The protein contains no lipids or carbohydrates, is the predominant species of peripheral erythrocyte membrane proteins, and exists as a fibrous coating on the inner, cytoplasmic surface of the membrane. alpha-Spectrin,beta-Spectrin,alpha Spectrin,beta Spectrin

Related Publications

E A Nigg, and R J Cherry
October 1990, Biochemical Society transactions,
E A Nigg, and R J Cherry
January 1984, European biophysics journal : EBJ,
E A Nigg, and R J Cherry
May 1989, Biochimica et biophysica acta,
Copied contents to your clipboard!