IL-6 triggers IL-21 production by human CD4+ T cells to drive STAT3-dependent plasma cell differentiation in B cells. 2012

Sean A Diehl, and Heike Schmidlin, and Maho Nagasawa, and Bianca Blom, and Hergen Spits
Department of Medicine-Immunobiology, University of Vermont, Burlington, VT 05405, USA. sean.diehl@uvm.edu

Interleukin (IL)-21-producing CD4(+)T cells are central to humoral immunity. Deciphering the signals that induce IL-21 production in CD4(+) T cells and those triggered by IL-21 in B cells are, therefore, of importance for understanding the generation of antibody (Ab) responses. Here, we show that IL-6 increased IL-21 production by human CD4(+) T cells, particularly in those that express the transcriptional regulator B cell lymphoma (BCL)6, which is required in mice for the development of C-X-C chemokine receptor type 5 (CXCR5(+)) IL-21-producing T follicular helper (T(FH)) cells. However, retroviral overexpression of BCL6 in total human CD4(+) T cells only transiently increased CXCR5, the canonical T(FH)-defining surface marker. We show here that IL-21 was required for the induction of Ab production by IL-6. In IL-21-treated B cells, signal transducer and activator of transcription (STAT)3 was required for optimal immunoglobulin production and upregulation of PR domain containing 1 (PRDM1(+)), the master plasma cell factor. These results, therefore, demonstrate the critical importance of STAT3 activation in B cells during IL-21-driven humoral immunity and suggest that BCL6 expression, although not sufficient, may serve as a platform for the acquisition of a T(FH)-like phenotype by human CD4(+) T cells.

UI MeSH Term Description Entries
D007136 Immunoglobulins Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses. Globulins, Immune,Immune Globulin,Immune Globulins,Immunoglobulin,Globulin, Immune
D007378 Interleukins Soluble factors which stimulate growth-related activities of leukocytes as well as other cell types. They enhance cell proliferation and differentiation, DNA synthesis, secretion of other biologically active molecules and responses to immune and inflammatory stimuli. Interleukin
D010950 Plasma Cells Specialized forms of antibody-producing B-LYMPHOCYTES. They synthesize and secrete immunoglobulin. They are found only in lymphoid organs and at sites of immune responses and normally do not circulate in the blood or lymph. (Rosen et al., Dictionary of Immunology, 1989, p169 & Abbas et al., Cellular and Molecular Immunology, 2d ed, p20) Plasmacytes,Cell, Plasma,Cells, Plasma,Plasma Cell,Plasmacyte
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015415 Biomarkers Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, ENVIRONMENTAL EXPOSURE and its effects, disease diagnosis; METABOLIC PROCESSES; SUBSTANCE ABUSE; PREGNANCY; cell line development; EPIDEMIOLOGIC STUDIES; etc. Biochemical Markers,Biological Markers,Biomarker,Clinical Markers,Immunologic Markers,Laboratory Markers,Markers, Biochemical,Markers, Biological,Markers, Clinical,Markers, Immunologic,Markers, Laboratory,Markers, Serum,Markers, Surrogate,Markers, Viral,Serum Markers,Surrogate Markers,Viral Markers,Biochemical Marker,Biologic Marker,Biologic Markers,Clinical Marker,Immune Marker,Immune Markers,Immunologic Marker,Laboratory Marker,Marker, Biochemical,Marker, Biological,Marker, Clinical,Marker, Immunologic,Marker, Laboratory,Marker, Serum,Marker, Surrogate,Serum Marker,Surrogate End Point,Surrogate End Points,Surrogate Endpoint,Surrogate Endpoints,Surrogate Marker,Viral Marker,Biological Marker,End Point, Surrogate,End Points, Surrogate,Endpoint, Surrogate,Endpoints, Surrogate,Marker, Biologic,Marker, Immune,Marker, Viral,Markers, Biologic,Markers, Immune
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D015850 Interleukin-6 A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS. Hepatocyte-Stimulating Factor,Hybridoma Growth Factor,IL-6,MGI-2,Myeloid Differentiation-Inducing Protein,Plasmacytoma Growth Factor,B Cell Stimulatory Factor-2,B-Cell Differentiation Factor,B-Cell Differentiation Factor-2,B-Cell Stimulatory Factor 2,B-Cell Stimulatory Factor-2,BSF-2,Differentiation Factor, B-Cell,Differentiation Factor-2, B-Cell,IFN-beta 2,IL6,Interferon beta-2,B Cell Differentiation Factor,B Cell Differentiation Factor 2,B Cell Stimulatory Factor 2,Differentiation Factor 2, B Cell,Differentiation Factor, B Cell,Differentiation-Inducing Protein, Myeloid,Growth Factor, Hybridoma,Growth Factor, Plasmacytoma,Hepatocyte Stimulating Factor,Interferon beta 2,Interleukin 6,Myeloid Differentiation Inducing Protein,beta-2, Interferon

Related Publications

Sean A Diehl, and Heike Schmidlin, and Maho Nagasawa, and Bianca Blom, and Hergen Spits
June 2011, Blood,
Sean A Diehl, and Heike Schmidlin, and Maho Nagasawa, and Bianca Blom, and Hergen Spits
May 2014, Nature communications,
Sean A Diehl, and Heike Schmidlin, and Maho Nagasawa, and Bianca Blom, and Hergen Spits
October 2010, Immunology,
Sean A Diehl, and Heike Schmidlin, and Maho Nagasawa, and Bianca Blom, and Hergen Spits
May 2004, Journal of immunology (Baltimore, Md. : 1950),
Sean A Diehl, and Heike Schmidlin, and Maho Nagasawa, and Bianca Blom, and Hergen Spits
January 2009, The Journal of experimental medicine,
Sean A Diehl, and Heike Schmidlin, and Maho Nagasawa, and Bianca Blom, and Hergen Spits
January 2013, PloS one,
Sean A Diehl, and Heike Schmidlin, and Maho Nagasawa, and Bianca Blom, and Hergen Spits
March 2014, Journal of immunology (Baltimore, Md. : 1950),
Sean A Diehl, and Heike Schmidlin, and Maho Nagasawa, and Bianca Blom, and Hergen Spits
January 2015, Immunological investigations,
Sean A Diehl, and Heike Schmidlin, and Maho Nagasawa, and Bianca Blom, and Hergen Spits
May 1979, Journal of immunology (Baltimore, Md. : 1950),
Sean A Diehl, and Heike Schmidlin, and Maho Nagasawa, and Bianca Blom, and Hergen Spits
July 2015, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!