Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. 2012

Amlan K Patra, and Zhongtang Yu
Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA.

Five essential oils (EOs), namely, clove oil (CLO), eucalyptus oil (EUO), garlic oil (GAO), origanum oil (ORO), and peppermint oil (PEO), were tested in vitro at 3 different doses (0.25, 0.50, and 1.0 g/liter) for their effect on methane production, fermentation, and select groups of ruminal microbes, including total bacteria, cellulolytic bacteria, archaea, and protozoa. All the EOs significantly reduced methane production with increasing doses, with reductions by 34.4%, 17.6%, 42.3%, 87%, and 25.7% for CLO, EUO, GAO, ORO, and PEO, respectively, at 1.0 g/liter compared with the control. However, apparent degradability of dry matter and neutral detergent fiber also decreased linearly with increasing doses by all EOs except GAO. The concentrations of total volatile fatty acids were not affected by GAO, EUO, or PEO but altered linearly and quadratically by CLO and ORO, respectively. All the EOs also differed in altering the molar proportions of acetate, propionate, and butyrate. As determined by quantitative real-time PCR, all the EOs decreased the abundance of archaea, protozoa, and major cellulolytic bacteria (i.e., Fibrobacter succinogenes, Ruminococcus flavefaciens, and R. albus) linearly with increasing EO doses. On the basis of denaturing gradient gel electrophoresis analysis, different EOs changed the composition of both archaeal and bacterial communities to different extents. The Shannon-Wiener diversity index (H') was reduced for archaea by all EOs in a dose-dependent manner but increased for bacteria at low and medium doses (0.25 and 0.50 g/liter) for all EOs except ORO. Due to the adverse effects on feed digestion and fermentation at high doses, a single EO may not effectively and practically mitigate methane emission from ruminants unless used at low doses in combinations with other antimethanogenic compounds.

UI MeSH Term Description Entries
D008697 Methane The simplest saturated hydrocarbon. It is a colorless, flammable gas, slightly soluble in water. It is one of the chief constituents of natural gas and is formed in the decomposition of organic matter. (Grant & Hackh's Chemical Dictionary, 5th ed)
D009822 Oils, Volatile Oils which evaporate readily. The volatile oils occur in aromatic plants, to which they give odor and other characteristics. Most volatile oils consist of a mixture of two or more TERPENES or of a mixture of an eleoptene (the more volatile constituent of a volatile oil) with a stearopten (the more solid constituent). The synonym essential oils refers to the essence of a plant, as its perfume or scent, and not to its indispensability. Essential Oil,Oil, Essential,Oil, Volatile,Oils, Essential,Volatile Oil,Essential Oils,Volatile Oils
D010271 Parasites Invertebrate organisms that live on or in another organism (the host), and benefit at the expense of the other. Traditionally excluded from definition of parasites are pathogenic BACTERIA; FUNGI; VIRUSES; and PLANTS; though they may live parasitically. Parasite
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D005285 Fermentation Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID. Fermentations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000890 Anti-Infective Agents Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection. Anti-Infective Agent,Anti-Microbial Agent,Antimicrobial Agent,Microbicide,Microbicides,Anti-Microbial Agents,Antiinfective Agents,Antimicrobial Agents,Agent, Anti-Infective,Agent, Anti-Microbial,Agent, Antimicrobial,Agents, Anti-Infective,Agents, Anti-Microbial,Agents, Antiinfective,Agents, Antimicrobial,Anti Infective Agent,Anti Infective Agents,Anti Microbial Agent,Anti Microbial Agents
D001105 Archaea One of the three domains of life (the others being BACTERIA and Eukarya), formerly called Archaebacteria under the taxon Bacteria, but now considered separate and distinct. They are characterized by: (1) the presence of characteristic tRNAs and ribosomal RNAs; (2) the absence of peptidoglycan cell walls; (3) the presence of ether-linked lipids built from branched-chain subunits; and (4) their occurrence in unusual habitats. While archaea resemble bacteria in morphology and genomic organization, they resemble eukarya in their method of genomic replication. The domain contains at least four kingdoms: CRENARCHAEOTA; EURYARCHAEOTA; NANOARCHAEOTA; and KORARCHAEOTA. Archaebacteria,Archaeobacteria,Archaeon,Archebacteria
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D012417 Rumen The first stomach of ruminants. It lies on the left side of the body, occupying the whole of the left side of the abdomen and even stretching across the median plane of the body to the right side. It is capacious, divided into an upper and a lower sac, each of which has a blind sac at its posterior extremity. The rumen is lined by mucous membrane containing no digestive glands, but mucus-secreting glands are present in large numbers. Coarse, partially chewed food is stored and churned in the rumen until the animal finds circumstances convenient for rumination. When this occurs, little balls of food are regurgitated through the esophagus into the mouth, and are subjected to a second more thorough mastication, swallowed, and passed on into other parts of the compound stomach. (From Black's Veterinary Dictionary, 17th ed) Rumens

Related Publications

Amlan K Patra, and Zhongtang Yu
August 2022, Animals : an open access journal from MDPI,
Amlan K Patra, and Zhongtang Yu
January 2013, BioMed research international,
Amlan K Patra, and Zhongtang Yu
August 2018, Journal of animal physiology and animal nutrition,
Amlan K Patra, and Zhongtang Yu
February 2013, Journal of animal physiology and animal nutrition,
Amlan K Patra, and Zhongtang Yu
June 2007, Journal of dairy science,
Copied contents to your clipboard!