Ecotropic viral integration site 1, stem cell self-renewal and leukemogenesis. 2012

Keisuke Kataoka, and Mineo Kurokawa
Department of Hematology and Oncology, University of Tokyo, Tokyo, Japan.

It has become evident that acute myeloid leukemia (AML) is organized as a cellular hierarchy initiated and maintained by a subset of self-renewing leukemia stem cells. Recent gene expression profile analysis of human leukemia stem cells and hematopoietic stem cell (HSC) populations identified a key transcriptional program shared by leukemia stem cells and HSC, which is associated with adverse outcomes in AML patients. One molecule that has been established as a pivotal regulator in fine-tuning of stem cell properties as well as a potent oncogenic determinant is ecotropic viral integration site 1 (EVI1). EVI1 is a transcription factor that has stem cell-specific expression pattern and is essential for the regulation of HSC self-renewal. This gene is notorious for its involvement in AML, as its activation confers extremely poor prognosis in patients with AML. Molecular analysis has identified a variety of gene products that are involved in HSC regulation as downstream targets or interacting proteins of EVI1. Thus, exploration of the molecular pathogenesis underlying EVI1-related leukemogenesis provides insight into how shared stemness transcriptional programs contribute to leukemia progression and therapeutic resistance in AML. Here, we review the current knowledge regarding the role of EVI1 in HSC self-renewal and leukemogenesis and highlight the relationship between stem cell self-renewal properties and adverse outcome in myeloid malignancies.

UI MeSH Term Description Entries
D011519 Proto-Oncogenes Normal cellular genes homologous to viral oncogenes. The products of proto-oncogenes are important regulators of biological processes and appear to be involved in the events that serve to maintain the ordered procession through the cell cycle. Proto-oncogenes have names of the form c-onc. Proto-Oncogene,Proto Oncogene,Proto Oncogenes
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000074008 MDS1 and EVI1 Complex Locus Protein A DNA binding protein, transcriptional regulator, and proto-oncogene protein that contains 10 CYS2-HIS2 ZINC FINGERS. It functions as a positive or negative regulator of expression for target genes involved in organism development. Ecotropic Virus Integration Site 1 Protein Homolog,MECOM Protein,Myelodysplasia Syndrome-Associated Protein 1,Zinc Finger Protein Evi1,Myelodysplasia Syndrome Associated Protein 1
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D015470 Leukemia, Myeloid, Acute Clonal expansion of myeloid blasts in bone marrow, blood, and other tissue. Myeloid leukemias develop from changes in cells that normally produce NEUTROPHILS; BASOPHILS; EOSINOPHILS; and MONOCYTES. Leukemia, Myelogenous, Acute,Leukemia, Nonlymphocytic, Acute,Myeloid Leukemia, Acute,Nonlymphocytic Leukemia, Acute,ANLL,Acute Myelogenous Leukemia,Acute Myeloid Leukemia,Acute Myeloid Leukemia with Maturation,Acute Myeloid Leukemia without Maturation,Leukemia, Acute Myelogenous,Leukemia, Acute Myeloid,Leukemia, Myeloblastic, Acute,Leukemia, Myelocytic, Acute,Leukemia, Myeloid, Acute, M1,Leukemia, Myeloid, Acute, M2,Leukemia, Nonlymphoblastic, Acute,Myeloblastic Leukemia, Acute,Myelocytic Leukemia, Acute,Myelogenous Leukemia, Acute,Myeloid Leukemia, Acute, M1,Myeloid Leukemia, Acute, M2,Nonlymphoblastic Leukemia, Acute,Acute Myeloblastic Leukemia,Acute Myeloblastic Leukemias,Acute Myelocytic Leukemia,Acute Myelocytic Leukemias,Acute Myelogenous Leukemias,Acute Myeloid Leukemias,Acute Nonlymphoblastic Leukemia,Acute Nonlymphoblastic Leukemias,Acute Nonlymphocytic Leukemia,Acute Nonlymphocytic Leukemias,Leukemia, Acute Myeloblastic,Leukemia, Acute Myelocytic,Leukemia, Acute Nonlymphoblastic,Leukemia, Acute Nonlymphocytic,Leukemias, Acute Myeloblastic,Leukemias, Acute Myelocytic,Leukemias, Acute Myelogenous,Leukemias, Acute Myeloid,Leukemias, Acute Nonlymphoblastic,Leukemias, Acute Nonlymphocytic,Myeloblastic Leukemias, Acute,Myelocytic Leukemias, Acute,Myelogenous Leukemias, Acute,Myeloid Leukemias, Acute,Nonlymphoblastic Leukemias, Acute,Nonlymphocytic Leukemias, Acute
D015973 Gene Expression Regulation, Leukemic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in leukemia. Leukemic Gene Expression Regulation,Regulation of Gene Expression, Leukemic,Regulation, Gene Expression, Leukemic
D044127 Epigenesis, Genetic A genetic process by which the adult organism is realized via mechanisms that lead to the restriction in the possible fates of cells, eventually leading to their differentiated state. Mechanisms involved cause heritable changes to cells without changes to DNA sequence such as DNA METHYLATION; HISTONE modification; DNA REPLICATION TIMING; NUCLEOSOME positioning; and heterochromatization which result in selective gene expression or repression. Epigenetic Processes,Epigenetic Process,Epigenetics Processes,Genetic Epigenesis,Process, Epigenetic,Processes, Epigenetic,Processes, Epigenetics

Related Publications

Keisuke Kataoka, and Mineo Kurokawa
July 2005, Experimental hematology,
Keisuke Kataoka, and Mineo Kurokawa
June 2008, Human reproduction (Oxford, England),
Keisuke Kataoka, and Mineo Kurokawa
March 2017, Oncogene,
Keisuke Kataoka, and Mineo Kurokawa
November 2019, Journal of neuro-oncology,
Keisuke Kataoka, and Mineo Kurokawa
August 1999, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
Keisuke Kataoka, and Mineo Kurokawa
January 2017, OncoTargets and therapy,
Copied contents to your clipboard!